Abstract

Vehicular networking has significant potential to enable many different applications related to traffic safety and traffic efficiency within Intelligent Transportation System. In this paper, cloud-based vehicular network architecture is proposed such that the vehicles can share computation resources, storage resources and bandwidth resources. The proposed architecture includes four types of cloud: a vehicular cloud, a roadside cloud, a cellular cloud and a central cloud. Then, a video capture service based on the proposed architecture is presented. Vehicular cloud is used to provide a video capture service of specific location, moving vehicle or route. It sends the captured video to a customer and the other available cloud to be used for further investigation. Resource allocation and management algorithms are proposed to handle the continuity of video capture with minimum service disruption. The proposed service is implemented using a test bed.
Video Capture Service in the Intelligent Transportation System based on Cloud Computing

ertico. com/ertico-its-europe/, last accessed on June 10th, 2014.
- Intelligent Transportation Systems Society of Canada: http://www.itscanada.ca, last accessed on June 10th, 2014
- Yougui Liu; Baoxing Bai; Research on GPRS vehicle location network service system, International Conference on Computer, Mechatronics, Control and Electronic Engineering (CMCE), Changchun, China 2010.
- Fekri M. Abduljalil, Ali Alsharafi, "An Efficient Digital Video Recording Scheme for Intelligent Transportation Systems;", World Congress on Computer and Information Technology (WCCIT’2013), IEEE Computer Society, Sousse, Tunisia, June 22-24,
2013.

Index Terms

Computer Science Distributed Systems

Keywords

Vehicular Network Cloud Computing Video Capture.