
2nd International Conference and workshop on Emerging Trends in Technology (ICWET) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

51

A Semantics based Approach to Efficient Retrieval of
Temporal Patterns

Ritambhra Korpal
Department of Computer Science

University of Pune
Pune, India

Arpita Gopal
Sinhgad Institute of Business Administration and

Research
(Affiliated to University of Pune)

Pune, India

ABSTRACT
Temporal data mining unearths patterns from sequential or

ordered data. Semantics of these patterns can be different

depending on the underlying data, technique used and the purpose

of data mining. Patterns included in this paper are taken from

three different domains and their structure and semantics are

different. First type, which we call temporal patterns, includes a

set of states and relationships among the states. Second type,

called sequential patterns includes a set of ordered states. Finally,

the third type called episodes is a partially ordered set of event

types. To index a database of these patterns, Signature based

techniques were considered to be a viable option as signatures

could accommodate multiple state values as well as the

relationship among the states. In this paper we compared the

different implementations of signature files when used indexes for

database of temporal patterns on various criteria listed in the

paper. Further, based on the semantics of sequential patterns and

episodes, and the results obtained above, we suggested which

implementations would be suitable for databases of other two

types of patterns.

General Terms

Indexes, Algorithms, Experimentation, Performance,

Measurement, Semantics

Keywords

Temporal Patterns, sequential patterns, episode, Signature Files,

Sequential Signature Files, Bit Slice Signature Files, Extendible

Signature Hashing, Signature Trees

1. INTRODUCTION
Temporal data mining is concerned with mining of large

sequential data sets, i.e. data which is ordered with respect to

some index. These data sets could be text, gene sequences, protein

sequences, lists of moves in a chess game etc. Here, although

there is no notion of time as such, the ordering among the records

is very important and is central to the data description/modeling.

Temporal patterns are generated whiling mining sequential or

ordered data and these can be of different nature depending on the

underlying data. Patterns included in this paper are taken from

three different domains and their structure and semantics are

different. First type, which we call temporal patterns, includes a

set of states and relationships among the states. Second type,

called sequential patterns, includes a set of ordered states. Finally,

the third type called episode, is a partially ordered set of event

types. While mining data, a central issue is not only generating

patterns but in-depth analysis of generated patterns is essential as

well. As the techniques to mine sequential data become more

refined, the number of patterns generated becomes very large.

Analysing these patterns while they are being generated becomes

overwhelming and many interesting and potentially useful

patterns may get lost during the process. While many interesting

techniques of temporal data mining have been proposed, it has

been shown that not all generated patterns are of interest to the

user [12], [20]. When the number of generated patterns becomes

exceedingly large, post processing of generated patterns becomes

essential [3]. For moderate number of patterns, grouping them

based on a similarity measure works satisfactorily. But as the

number increases, we need different techniques to handle them.

One of the approaches could be to store the patterns in a database

and later query this database to retrieve the required patterns.

Indexes can be used on this database to speed up such queries as

the size of the database grows. Signature-based indexing

techniques were found to be a viable option as signatures can be

generated for each pattern accommodating multiple state values as

well as the relationship among the states. There are various

implementations of signature files available each with its own

strengths and weaknesses. Hence it was imperative to investigate

the suitability of each when applied to content-based retrieval of

patterns. In this paper, the suitability and limitations of

Sequential Signature Files (SSF), Bit-Slice Signature Files

(BSSF), Extendible Signature Hashing (ESHF) and Signature

Tree (STF) implementations of signature files when applied to

database of temporal patterns of were explored. The types of

queries considered for efficient response are content-based

queries. The content-based queries include equality, sub-pattern

and super-pattern queries. These types of queries help to

investigate those patterns for which a component of the pattern is

already known to us. Based on the semantics of other two types of

patterns and results of above study, a suitable implementation was

suggested for databases of sequential patterns and episodes.

2. RELATED WORK
Agrawal & Srikant [4] have introduced the problem of finding

sequential patterns in large database of customer transactions.

Mannila et al [14] have considered the problem of discovering

frequently occurring episodes in a sequence. An episode is a

collection of events that occur relatively close to each other in a

given partial order.

Edi Winarko et al [7] have studied the application of signature

files as an indexing techniques for efficient retrieval of temporal

patterns. They have investigated the performance of SSF and

BSSF as an indexing technique for efficient retrieval of content-

based queries on temporal patterns.

Yangjun Chen and Yibin Chen [21], [22] have proposed a new

method to organize signature file into a tree structure, called a

signature tree, to speed up the signature file scanning and query

2nd International Conference and workshop on Emerging Trends in Technology (ICWET) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

52

evaluation. They have also analyzed the average time complexity

of searching a signature tree and maintenance of signature trees.

Ritambhra and Arpita Gopal [18] have studied the performance of

Signature Trees as an indexing technique for efficient retrieval of

content-based queries on temporal patterns.

Ritambhra and Arpita Gopal [17] have studied the performance of

Extendible Signature Hashing [ESHF] as an indexing technique

for efficient retrieval of content-based queries on temporal

patterns. They have also compared the performance of ESHF

against SSF and BSSF implementations of signature files and

have reported that ESHF outperforms the other two

implementations.

Y. Ishikawa, H. Kitagawa, and N. Ohbo [23] have applied the

signature based indexes for queries involving set-valued attributes

in OODBs. They have considered two implementations of

signature files: the sequential signature files and bit-slice

signature files.

Helmer et all have studied [19] Extendible hashing, proposed by

Fagin R, Nievergelt J, Pippenger N, Strong HR [16]. They have

modified this indexing method to use signatures instead of hash

keys. Theses signature/reference pairs get distributed among

various buckets. They investigated the performance of four index

structures for set-valued attributes (sequential signature files,

signature trees, extendible signature hashing, and inverted lists).

The indexes were evaluated on three forms of set-valued queries

— equality queries, subset queries, and superset queries.

The comparative studies so far focused mainly on efficient

response time. Some other criteria like space overhead, index

construction time and scalability were, however, not handled.

 Since the set-based indexes do not consider the ordering of items

in the sets, whereas ordering is important for indexing and

retrieval of temporal patterns, new indexing techniques have been

proposed as well [13], [2]. This involves converting the sequential

patterns into equivalent sets that accommodate the ordering of

items. After that set-based indexing methods can be applied on

the equivalent sets.

3. PRELIMINARIES

3.1 Temporal Patterns
The temporal patterns [1] described in this paper consist of two

components: a set of state intervals and a set of relationships

between those state intervals that represent the order of states

within the pattern [9]. These relationships can be before(b),

meets(m), overlaps(o), is-finished-by(fi), contains(c) and starts(s)

[8]. Fig. 1 shows some temporal patterns defined over set of states

S= {A, B, C, D} and set of relationships Rel = { =, b, m, o, fi, c,

s}. A pattern β is a subpattern of pattern α, if β can be obtained

from α by removing some state intervals.

Figure 1. Temporal Patterns

3.2 Sequential Patterns
A sequential pattern is a large and maximal sequence among the

set of all large sequences [4]. If a sequence s of itemsets is

denoted by s1 s2..sn , where each sj is an itemset, it is called an

n-sequence. E.g (AB) (F) (BC) (DE) is a 4-sequence. A

sequence a = a1 a2 . . an is said to be contained in another

sequence b = b1 b2 . . bm if there exist integers i1 < i2 < . . < in,

such that a1 ⊆ bi1, a2 ⊆ bi2, . . . , an ⊆ bin. That is, an n-

sequence a is contained in a m-sequence b if there exists an n-

length subsequence in b, in which each itemset contains the

corresponding itemsets of a. For example, the sequence

(A)(BC) is contained in (AB) (F) (BC) (DE) but not in (BC)

(AB) (C) (DE) . Further, a sequence is said to be maximal in a set

of sequences, if it is not contained in any other sequence.

Consider an example of a database with 5 customers whose

corresponding transaction sequences are as follows:

(1) (AB) (ACD) (BE) ,

(2) (D) (ABE) ,

(3) (A) (BD) (ABEF) (GH) ,

(4) (A) (F) , and

(5) (AD) (BEGH) (F) .

All customer transaction sequences listed above, are maximal in

this set of sequences except the sequence of customer 4, which is

contained in, transaction sequence of customer 3.

3.3 Episodes
Episodes are patterns that occur sufficiently often in the data

presented as a single long sequence [14]. This single event

sequence is denoted by (E1, t1), (E2, t2), .. , where Ei takes

values from a finite set of event types E, and ti is an integer

denoting the time stamp of the ith event and i, ti ≤ ti+1.

For example, event sequence with 10 events in it can be written

as:

(A, 2), (B, 3), (A, 7), (C, 8), (B, 9), (D, 11), (C, 12), (A, 13), (B,

14), (C, 15)

An episode α is defined by a triple (V, ≤, g), where V is a

collection of nodes, ≤ is a partial order on V and g : V → E is the

mapping that associates each node in the episode with an event

type. Thus, an episode is just a partially ordered set of event

types. For example, (A → B → C) is a 3-node episode. An

episode is said to occur in an event sequence if there exist events

in the sequence occurring with exactly in the same order as that

prescribed in the episode. For example, in the event sequence

2nd International Conference and workshop on Emerging Trends in Technology (ICWET) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

53

above, the events (A, 2), (B, 3) and (C, 8) constitute an

occurrence of the episode (A → B → C).

An episode β is said to be a subepisode of episode α if all the

event types in β appear in α as well, and if the partial order among

the event types of β is the same as that for the corresponding

event types in α. For example, (A → C) is a 2-node subepisode of

the serial episode (A → B → C) while (B → A) is not a

subepisode.

3.4 Content-based Queries
If D is a database of patterns and q is a query pattern, the content-

based queries in this research include the following:

1. Subpattern queries, i.e. those patterns in D that contain q.

2. Superpattern queries, i.e. those patterns in D that are contained

in q.

3. Equality queries, i.e. patterns in D that are equal to q.

The problem of selecting a suitable implementation of signature

file for efficient content-based retrieval of patterns can then be

formally defined as follows:

Given a database D of discovered temporal patterns, compare

various implementations of signature-based indexes with respect

to various criteria like number of false drops generated, query

response time, index construction time, space requirements of the

index. Further, based on these results and semantics of sequential

patterns and episodes, suggest a suitable implementation of

signature file as index for their databases.

4. SIGNATURE BASED INDEXES

4.1 Signature Files
A signature is a superimposed bit pattern generated from the

values of the attributes. The target signature is obtained by the

bitwise union of all the element signatures of the target set. When

applying the technique of superimposed coding, each element of a

given set is mapped via a coding function to a bit field of length

F, called signature length, where exactly m < F bits are set. These

bit fields are superimposed by a bitwise or operation to yield the

final signature of the set [5].

If T and Q denote the target set and the query set respectively,

commonly used set-valued queries are

a) Subset query (Q T). The query set is the subset of target set.

b) Superset query (Q T). The query set is the superset of target

set.

c) Equality query (Q T). The query set is equal to the target set.

The important parameters here are the length of the signature

denoted as ‗F‘ and the weight of the signature denoted as ‗m‘.

Retrieval using signature files is based on the inexact filter. They

provide a quick test, which discards many of the non-qualifying

elements and qualifying elements become drops. This step is

called the filtering step. The second step is false-drop resolution.

In this step, each drop is retrieved and verified. The drops which

do not satisfy the query condition are called the false-drops and

those which satisfy the condition are called actual drops. False

drops occur due to collision of element signatures and the

superimposed coding method used to generate the signatures. The

false drops affect the number of block accesses and hence the

processing time.

4.2 Sequential Signature Files (SSF)
In a sequential signature file, a set of signature/reference pairs is

sequentially stored. When a new signature arrives it is just

appended at the end of the file. To retrieve a pattern using SSF, a

full scan of the file is done looking for signatures which match

with the query signature [21].

4.3 Bit-Slice Signature Files (BSSF)
The signatures in BSSF are stored in a column wise manner. If the

length of the signatures is F, then all the signatures will be stored

in F files, in each of which one bit per signature for all the

signatures is stored. To retrieve using BSSF index, the signatures

are checked slice-by-slice rather than each signature to find

matching signatures. Only those bit-slices, for which there is a

one in the query signature [21] were retrieved.

4.4 Extendible Signature Hashing (ESHF)
In extendible signature hashing for database of temporal patterns

[19] signatures are used instead of hash keys. Let sigd be a prefix

of signature sig consisting of first d bits.

The index is divided into two parts, the directory and the buckets

[16]. A bucket contains tuples consisting of the signature of the

data item and reference to the data item. The directory begins with

the header that holds the value for the (global) depth d. The

directory has 2d entries which are references to the buckets. When

searching for a pattern, sigd of the query pattern is determined to

find the reference to the bucket where the pattern is to be found.

The entries in the directory are not necessarily distinct, so there

may be more than one reference in the directory pointing to the

same bucket. The local depth d‘ of a bucket specifies the length of

prefix actually used in this bucket, i.e. only the first d‘ bits of the

signatures of all entries in the bucket must be equal.

4.5 Signature Tree (STF)
In a signature tree [21], [22], each path is a signature identifier, as

defined below, and is not a continuous piece of bits.

Let si be a signature of length m. si = si[1] si[2]…si[m] where

each si[j] {0,1}, j = (1,…,m). si(j1,…,jh) denotes a sequence of

pairs with regard to si: (j1, si[j1]), (j2, si[j2])…(jh, si[jh]), where

1 jk m for k {1,…,h}.

Signature Identifier: Let S = s1, s2,..., sn be a signature file.

Consider si(1 i n). If there exists a sequence: j1,...,jh such that

for any k i (1 k n), if si(j1,..., jh) sk(j1,...,jh), then si(j1,...,

jh) is an identifier of si with regard to S.

Signature Tree: A signature tree for the signature file S, where si

 sj for i j and |sk| = m for k =1,...,n, is a binary tree T such that

1. For each internal node of T, the left edge is always labeled

with 0 and the right edge is labeled with 1.

2. T has n leaves labelled 1,2,...,n, used as pointers to n

different positions of s1, s2,..., sn in S.

3. Each internal node v is associated with a number, denoted by

sk(v), to tell which bit will be checked.

5. SIGNATURE FILES AS INDEXES FOR

DATABASE OF PATTERNS
Since temporal patterns involve sets of states and time ordered

relationship among these states, traditional indexes cannot be

used. There are three reasons for using signatures to encode

2nd International Conference and workshop on Emerging Trends in Technology (ICWET) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

54

temporal patterns. First, they are of fixed length and hence very

convenient for index structures. Second, comparison operators on

signatures can be implemented by efficient bit operations. Third,

signatures are more space efficient than explicit pattern

representation.

5.1 Preserving Ordering among States
To apply any signature-based indexing technique for indexing a

database of temporal patterns, the ordering of states and

relationships inherent to temporal patterns must be preserved.

Thus using the techniques discussed in [13], [2] the temporal

pattern is first converted into equivalent sets and then the

signatures were generated from there. Table 1 below shows the

equivalent sets and signatures generated for temporal patterns

shown in Figure1.

TABLE I. EQUIVALENT SETS AND SIGNATURES OF TEMPORAL

PATTERNS

Given two temporal patterns p and q and their corresponding

signatures sigp and sigq, these signatures have the following

properties:

1. p q → sigp sigq = sigq

2. p q → sigp sigq = sigp

3. p = q → sigp = sigq

Here, ‗ ‘ represents bit-wise AND operation. The signature file of

temporal patterns in database D can then be created as follows:

For each temporal pattern p D, its equivalent set E(p) is

calculated, and then, its signature sigp is generated. This signature

together with the temporal pattern identifier (pid) is inserted into

the signature file [7, 15, 16].

5.2 Parameters of Investigation
This study aimed at investigating the suitability of signature files

as indexes for database of temporal patterns, Since there are

various implementations of signature files available, it was natural

to be able to rank these implementations for various parameters

like the type of queries it is used for, query retrieval time, index

construction cost which includes time to build the index as well

space requirements if any. The parameters chosen for this study

are guided by the following points.

1. Different implementations of signature files used as indexes for

a database of temporal patterns were to be investigated for their

suitability.

2. The type of queries considered here is content-based queries.

3. The database of temporal patterns is generated by temporal data

mining and does not have many deletions and modifications.

4. The insertions are bulk insertions, frequency of which depends

on the domain chosen. Thus, when there is a bulk load of new

insertions, the index would require to be extensively modified.

Guided by these, the following investigation parameters were

decided:

a) Number of false drops generated during subpattern,

superpattern and equal pattern queries.

b) Index construction time

c) Query response time i.e. the performance of the index

d) Index size

6. EXPERIMENTAL SETUP
Extensive experiments were conducted to explore various

implementations of signatures files as indexes under the criteria

chosen. The following sections give the details of these

experiments and experimental parameters.

6.1 Hardware/software Platform
All programs were written in C++ Language. The experiments

were conducted on a 2-GHz Intel Core 2 Duo PC with 1 GB bytes

of RAM running Windows XP Professional.

6.2 Experimental Parameters
Table 2 shows the experimental parameters chosen for this

comparative study. During the experiments, the signature size F

was varied from 8 to 128, keeping the weight m of the element

signatures fixed at 1. Number of states N was chosen to be 100

and Database size was varied from 10,000 to 50,000.

6.3 Generating Data
Database of temporal patterns was generated synthetically as

below:

First the size of a pattern was generated using Poisson distribution

with mean |T| = 5. The states were picked up randomly from set

of states. Then the relationships among the states were picked

randomly from the set of relationships. Initially, a database of

10000 patterns was generated this way. To build the index on this

database of temporal patterns, each temporal pattern was

converted into an equivalent set using state mapping and

relationship mapping functions [2],[13].

TABLE II. EXPERIMENTAL PARAMETERS

Symbol Meaning

F Signature Size

m Weight of signature

N Number of States

|D| Size of Temporal Patterns Database

|T| Average size of Temporal Pattern

Q Size of Query Pattern

6.4 Generating Queries
To ensure a hit for the pattern to be queried, query patterns were

generated as follows:

For equality queries, a pattern from the database was picked up

randomly. For subpattern queries, the temporal pattern of size 5

was randomly selected, and then the states from the selected

pattern starting from the last state were individually removed,

resulting in a set of five queries. A similar method was performed

2nd International Conference and workshop on Emerging Trends in Technology (ICWET) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

55

for super pattern queries by selecting a temporal pattern of size 10

to generate a set of five queries.

7. RESULTS

7.1 Index Size
In this experiment, the size of the index for each implementation

of signature file was compared on two parameters. First, the

signature size was varied, keeping the database size fixed and

change in index size was observed (see Figure 2). Also keeping

the signature size fixed, database size was varied from 10,000

patterns to 50,000 and change in index size was noted (see Figure

3). It was observed that for SSF, as the signature size is varied,

there is no change in the index size and it grows linearly with

change in database size.

For BSSF, the index size increased exponentially with the

increase in signature size but increased linearly with the increase

in database size.In case of ESHF, with the increase in signature

size as well as database size, the size of index increased linearly,

in a definite pattern.

While index size for these three implementations was only small

percentage of size of the database, this size was almost equal to

the database size for STF. Thus the space overhead was found to

be maximum case of STF amongst all the implementations.

7.2 Index Building Time
In this experiment, the index building time was compared with the

increase in signature size as well as increase in database size. It

was observed that, increasing the signature size did not

significantly impact the index building time in any of the indexing

techniques. The index building time increased proportionately

with increase in database size across all indexing techniques (see

Figure 4).

Change in Index Size with Signature Size

0

1000

2000

3000

4000

5000

6000

7000

8 16 32 64 12
8 8 16 32 64 12
8 8 16 32 64 12
8

SSF BSSF ESHF

Signature File type and Signature size(bits)

In
d

ex
 S

iz
e

(K
B

) 10000

20000

30000

40000

50000

Figure 2. Index Size variation with signature size for different implementations of Signature files

Change in Index Size with Database Size

0

1000

2000

3000

4000

5000

6000

7000

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

SSF BSSF ESHF

Signature File type and Database size (No. of Patterns)

In
de

x
Si

ze
 (K

B
) 8

16

32

64

128

Figure 3. Index Size variation with database size for different implementations of Signature files

2nd International Conference and workshop on Emerging Trends in Technology (ICWET) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

56

Index Building Time

0

20

40

60

80

100

10000 20000 30000 40000 50000

Database Size (No. of Patterns)

Ti
m

e(
se

c

SSF

BSSF

ESHF

STF

Figure 4. Index building time for different implementations of Signature file

7.3 Number of False Drops

7.3.1 Subpattern Query
In this experiment, the effect of change in signature size on the

number of false drops in Sub pattern of queries was observed.

The optimal parameters for each query type in the experimental

environment were determined. Fixing the size of the database |D|

= 50,000, the average size of temporal pattern |T| = 5, and the

number of states N = 100, the size of signature F was varied

from 8 to 128 bits and the number of false drops was measured.

Figure 5 shows the number of false drops for different signature

sizes for different implementations of signature files. As can be

seen, the number of false drops consistently decreased as the

size of the signature increased, for each of the implementations.

The number of false drops was also influenced by the size of the

query pattern. For SubPattern Query, the larger the query

pattern, the lower the number of false drops. Out of all the

implementations, the ESHF performed the best for all signature

sizes. For this implementation, the number of false drops

became almost nil for higher signature size. SSF scored very

low in this parameter, with number of false drops almost equal

to the number of patterns for lower signature sizes and

improving only marginally for higher signature sizes.

Number of False Drops for Subpattern Query

0

10000

20000

30000

40000

50000

8 16 32 64 12
8 8 16 32 64 12
8 8 16 32 64 12
8 8 16 32 64

13
86

SSF BSSF ESHF STF

Signature Size (bits)

N
um

be
r

of
 F

al
se

 D
ro

ps

QS=1

QS=2

QS=3

QS=4

QS=5

Figure 5. Number of false drops for different implementations of Signature files for subpattern query

7.3.2 Superpattern Query
In this experiment, the effect of change in signature size on the

number of false drops in Super Pattern type of queries was

observed. The optimal parameters for each query type in the

experimental environment were determined. Fixing the size of

the database |D| = 50, 000, the average size of temporal pattern

|T| = 5, and the number of states N = 100, the size of signature F

was varied from 8 to 128 bits and the number of false drops was

measured. Figure 5 shows the number of false drops for different

signature sizes for different implementations of signature files.

For SuperPattern Query, the larger the query pattern, the higher

the number of false drops (see Figure 6). In this category also,

the number of false drops for ESHF was the lowest as compared

to SSF, BSSF and STF. It was also observed that for BSSF and

STF, the superpattern search reduces to searching the whole

index and tree respectively. This is due to the condition of

superpattern queries listed in section 4.5. For STF, since it is

build on signature identifiers, the whole tree needs to be

traversed to reach to each leaf nodes to get the signatures and

then check the condition for superpatterns. Nonetheless, it is

better than SSF, because the search here reduces to binary search

as compared to sequential search in SSF.

7.4 Query Retrieval Time
This experiment used the above data sets to compare the relative

performance of SubPattern Query and Super Pattern Query for

different implementations of signature files. Each method was

2nd International Conference and workshop on Emerging Trends in Technology (ICWET) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

57

run on each of the queries used in the previous experiment. It

was observed that the query processing times is proportional to

the number of false drops from the previous experiments. ESHF

index performs better than SSF, BSSF and STF. This is because

for smaller size signature size, the number of false drops is so

high that almost every pattern gets selected in the database and

hence must be retrieved in the verification step. While in ESHF,

as shown the previous experiment, the number of false drops

reduced considerably and hence the processing time. Thus the

retrieval times using SSF or BSSF are much more as compared

to STF but ESHF performed the best.

Number of False drops for Superpattern Query

0

10000

20000

30000

40000

50000

60000
8 16 32 64 12
8 8 16 32 64 12
8 8 16 32 64 12
8 8 16 32 64 12
8

SSF BSSF ESHF STF

Signature size (bits)

Nu
m

be
r o

f F
al

se
 D

ro
ps

QS=6

QS=7

QS=8

QS=9

QS=10

Figure 6. Number of false drops for different implementations of Signature files for superpattern query

8. SEMANTIC ANALYSIS OF OTHER

PATTERNS

8.1 Sequential Patterns
As defined in section 3.2, sequential patterns are large and

maximal sequences among a set of sequences. Sequential

patterns are represented as sequences of itemsets i.e. each

itemset is again set of items [4]. Thus a sequential pattern is

essentially a large and maximal sequence of sets. Thus to index

a database of discovered sequential patterns, we need to use

those techniques which are used for indexing set-valued

attributes. Signature based techniques are thus suitable to index

a database of sequential patterns. Further, here also ordering of

sets of items is important and we treat a sequential pattern as

ordered sets of sets. Therefore, using the techniques discussed

in [13], [2], we will first convert them into equivalent sets to

preserve ordering and then apply signature-based indexing

techniques. Next we look at the domains where such a data is

available. One immediate application is the buying patterns of

customers in a super market [4]. We generate sequential patterns

from the data available for each customer in their subsequent

visits to the supermarket. We analyse this to figure out how the

sale deviate and what generally are the peak periods for such

deviations. If we get such deviations during a particular period

of the year or month over sufficient range of data, it becomes an

interesting pattern and can be used to predict sales in the

succeeding years. Therefore generally such patterns are used for

predictive modelling. Now when we a have database of such

sequential patterns, what would the type queries be to retrieve

patterns for prediction. After studying many similar systems, we

reached to the conclusion that most of the queries are super

pattern queries or equality queries. Additionally, since these

types of patterns are found in transaction oriented systems, the

index should be efficiently scalable, with a proportional increase

in storage requirements.

Keeping these semantics in mind and the results shown above, it

is suggested that either SSF or ESHF are more suitable for such

type of patterns. As can be seen, the storage requirements

increase proportional to the increase in database size, the

number of false drops is low and both are suitable for all types

of content-based queries. For STF and BSSF, the storage

requirements are very high and grow very fast with the increase

in database size, they would not be suitable. Additionally the

inherent nature of these two techniques is more suited for

subpattern queries.

8.2 Episodes
As defined in section 3.3, an episode interpretation says that the

events in g(V) have to occur in the order described by . [14].

Since the episodes are sequence of events and number of events

in different episodes may vary, we can use indexing techniques

for set-valued attributes. Additionally, the ordering of events in

an episode is important. Hence we can use the techniques

discussed in [13], [2] to convert the episode into equivalent set,

where ordering can be preserved. Thus a database of frequent

episodes can be indexed using signature-based indexing

techniques. Next, we analyse the domains where the episode

discovery may be useful.

The episode discovery was originally applied to analysing alarm

streams in a telecommunication network [14]. Another

application is the mining of data from assembly lines in

manufacturing plants [15]. The analysis of episodes here could

help in understanding the hidden correlations between different

fault conditions and hence improving the performance and

throughputs of the assembly line. In manufacturing plants,

frequent episode analysis may help in some process

improvements by studying the frequent episodes in one line and

comparing them to those in the other. Frequent episode

discovery has also been applied to web-navigation logs. Thus we

reach to the conclusion that framework of episode discovery

falls under descriptive modelling where we are able to

summarize a given situation. We now look at the majority of

queries be in such situations. From a detailed analysis of

applications above, it could concluded that majority of the

queries would be subpattern queries or equality queries.

2nd International Conference and workshop on Emerging Trends in Technology (ICWET) 2011

Proceedings published by International Journal of Computer Applications® (IJCA)

58

Keeping these semantics in mind, and results shown above it can

be suggested that BSSF and STF, which are designed inherently

for subpattern queries, would be suitable candidates. Since

episode discovery is descriptive modelling, there may not be

large changes to the underlying data, thus there is not much

change in the database of episodes.

9. CONCLUSION
The paper presented a study of different implementations of

signature files as index on a database of temporal patterns for

efficient content-based retrieval of temporal patterns. The

comparison was done on various parameters like index building

time, space overhead, number of false drops and query

performance. Each of these parameters was tested on different

implementations, for different signature sizes and database sizes.

ESHF performed best in all the parameters. However, space

overhead becomes erratic as the database size grows or the

signature size is increased. While STF shows a large space

overhead, SSF was voted out for exceedingly large number of

false drops. Both BSSF and STF are found to be not so suitable

for superpattern queries. Additionally, STF has the problem of

generating skewed trees. Based on these results and semantic

analysis of sequential patterns and episodes, we also suggested

which implementations would be suitable for databases of these

patterns. These suggestions, however, are empirical and have to

be verified experimentally. The comparisons were also done on

synthetic datasets only. These experiments can also be

performed for actual data as a future course of action.

10. REFERENCES
[1] A. Carlson, S. Estepp, M. Fowler. ―Temporal

Patterns‖(AT&T Martin Fowler and Policy Management

Systems Corporation, August 1998)

[2] A. Nanopoulos, M. Zakrzewicz, T. Morzy, and Y.

Manolopoulos, ―Efficient storage and querying of

sequential patterns in database systems,‖ Information and

Software Technology, vol. 45, pp. 23-34, 2003.

[3] A. Tuzhilin and B. Liu, ―Querying multiple sets of

discovered rules,‖ Proc. ACM SIGKDD ‘02, pp. 52-60,

2002.

[4] Agrawal R, Srikant R 1995 Mining sequential patterns. In

Proc. 11th Int. Conf. on Data Engineering, (Washington,

DC: IEEE Comput. Soc.)

[5] C. Faloutsos and S. Christodoulakis. Signature files: An

access method for documents and its analytical

performance evaluation. ACM Transactions on Office

Informations Systems, 2(4):267– 288, October 1984.

[6] C.M. Antunes and A.L. Oliveira, ―Temporal data mining:

An overview,‖ Proc. ACM SIGKDD Workshop Temporal

Data Mining, pp. 1-13, 2001.

[7] E. Winarko and J.F. Roddick, ―A signature-based indexing

method for efficient content-based retrieval of relative

temporal patterns‖,IEEE Trans. on Knowledge and Data

Engineering, VOL. 20, NO. 6, JUNE 2008.

[8] F. Ho¨ppner, ―Learning Temporal Rules from State

Sequences,‖Proc. IJCAI Workshop Learning from

Temporal and Spatial Data,pp. 25-31, 2001.

[9] Faloutsos C, Christodoulakis S (1984) Signature files: an

access method for documents and its analytical

performance evaluation. ACM Trans Office Inform Sys

2(4):267–288

[10] J. F. Roddick and M. Spiliopoulou, ―A survey of temporal

knowledge discovery paradigms and methods,‖ IEEE

Trans. Knowledge and Data Eng., vol. 14, no. 4, pp. 750-

767, Mar./Apr. 2002.

[11] J. Xiao, Y. Zhang, X. Jia, and T. Li, ―Measuring similarity

of interests for clustering web-users,‖ Proc. 12th

Australasian Database Conf. (ADC ‘01), M. Orlowska and

J. Roddick, eds., pp. 107-114, 2001.

[12] L. Geng and H.J. Hamilton, ―Interestingness Measures for

datamining: A survey,‖ ACM Computing Surveys, vol. 38,

no. 3, 2006.

[13] M. Zakrzewicz, ―Sequential index structure for content-

based retrieval,‖ Proc. Fifth Pacific-Asia Conf. Knowledge

Discovery and Data Mining (PAKDD ‘01), pp. 306-311,

2001.

[14] Mannila H, Toivonen H, Verkamo A I 1997 Discovery of

frequent episodes in event sequences. DataMining

Knowledge Discovery 1: 259–289

[15] Laxman S, Sastry P S, Unnikrishnan K P 2004b Fast

algorithms for frequent episode discovery in event

sequences. In Proc. 3rd Workshop on Mining Temporal

and Sequential Data, Seattle, WA.

[16] R. Fagin, J. Nievergelt, N. Pippenger, H.R. Strong,

―Extendible hashing – a fast access method for dynamic

files. ACM Trans Database Sys 4(3):315–344.

[17] Ritambhra Korpal, Arpita Gopal ―Extendible Signature

Hashing based Indexing for Efficient Content-based

Retrieval of Temporal Patterns‖ IJCSA Issue 2010, ISSN

0974-0767;178-183

[18] Ritambhra Korpal, Arpita Gopal ―Signature Trees as Index

for Database of Temporal Patterns‖, in press.

[19] S. Helmer and G. Moerkotte, ―A performance study of four

index structures for set-valued attributes of low

cardinality,‖ VLDB J., vol. 12, no. 3, pp. 244-261, 2003.

[20] T. Imielinski and A. Virmani, ―Association rules . . . and

what‘s next? Towards second generation data mining

systems,‖ Proc. Second East European Symp. Advances in

Databases and Information Systems (ADBIS ‘98), pp. 6-25,

1998.

[21] Y. Chen, ―Building signature trees into OODBs,‖ J.

Information Science and Eng., vol. 20, no. 2, pp. 275-304,

2004.

[22] Y. Chen, Y. Chen, ―On the Signature Tree Construction

and Analysis, IEEE Trans. On Knowledge and Data

Engineering, VOL. 18, NO. 9, SEPTEMBER 2006.

[23] Y. Ishikawa, H. Kitagawa, and N. Ohbo, ―Evaluation of

signature files as set access facilities in OODBs,‖ Proc.

ACM SIGMOD ‘93, P. Buneman and S. Jajodia, eds., pp.

247-256, 1993.

