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ABSTRACT 
Temporal data mining unearths patterns from sequential or 

ordered data. Semantics of these patterns can be different 

depending on the underlying data, technique used and the purpose 

of data mining. Patterns included in this paper are taken from 

three different domains and their structure and semantics are 

different. First type, which we call temporal patterns, includes a 

set of states and relationships among the states. Second type, 

called sequential patterns includes a set of ordered states. Finally, 

the third type called episodes is a partially ordered set of event 

types. To index a database of these patterns, Signature based 

techniques were considered to be a viable option as signatures 

could accommodate multiple state values as well as the 

relationship among the states. In this paper we compared the 

different implementations of signature files when used indexes for 

database of temporal patterns on various criteria listed in the 

paper.  Further, based on the semantics of sequential patterns and 

episodes, and the results obtained above, we suggested which 

implementations would be suitable for databases of other two 

types of patterns.  
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1. INTRODUCTION 
Temporal data mining is concerned with mining of large 

sequential data sets, i.e. data which is ordered with respect to 

some index. These data sets could be text, gene sequences, protein 

sequences, lists of moves in a chess game etc. Here, although 

there is no notion of time as such, the ordering among the records 

is very important and is central to the data description/modeling. 

Temporal patterns are generated whiling mining sequential or 

ordered data and these can be of different nature depending on the 

underlying data. Patterns included in this paper are taken from 

three different domains and their structure and semantics are 

different. First type, which we call temporal patterns, includes a 

set of states and relationships among the states. Second type, 

called sequential patterns, includes a set of ordered states. Finally, 

the third type called episode, is a partially ordered set of event 

types. While mining data, a central issue is not only generating 

patterns but in-depth analysis of generated patterns is essential as 

well. As the techniques to mine sequential data become more 

refined, the number of patterns generated becomes very large. 

Analysing these patterns while they are being generated becomes 

overwhelming and many interesting and potentially useful 

patterns may get lost during the process. While many interesting 

techniques of temporal data mining have been proposed, it has 

been shown  that not all generated patterns  are of interest to the 

user [12], [20]. When the number of generated patterns becomes 

exceedingly large, post processing of generated patterns becomes 

essential [3]. For moderate number of patterns, grouping them 

based on a similarity measure works satisfactorily. But as the 

number increases, we need different techniques to handle them. 

One of the approaches could be to store the patterns in a database 

and later query this database to retrieve the required patterns. 

Indexes can be used on this database to speed up such queries as 

the size of the database grows. Signature-based indexing 

techniques were found to be a viable option as signatures can be 

generated for each pattern accommodating multiple state values as 

well as the relationship among the states. There are various 

implementations of signature files available each with its own 

strengths and weaknesses. Hence it was imperative to investigate 

the suitability of each when applied to content-based retrieval of 

patterns.  In this paper, the suitability and limitations of 

Sequential Signature Files (SSF), Bit-Slice Signature Files 

(BSSF), Extendible Signature Hashing (ESHF) and Signature 

Tree (STF) implementations of signature files when applied to 

database of temporal patterns of were explored.  The types of 

queries considered for efficient response are content-based 

queries. The content-based queries include equality, sub-pattern 

and super-pattern queries. These types of queries help to 

investigate those patterns for which a component of the pattern is 

already known to us. Based on the semantics of other two types of 

patterns and results of above study, a suitable implementation was 

suggested for databases of sequential patterns and episodes.  

2. RELATED WORK 
Agrawal & Srikant [4] have introduced the problem of finding 

sequential patterns in large database of customer transactions. 

Mannila et al [14] have considered the problem of discovering 

frequently occurring episodes in a sequence. An episode is a 

collection of events that occur relatively close to each other in a 

given partial order. 

Edi Winarko et al [7] have studied the application of signature 

files as an indexing techniques for efficient retrieval of temporal 

patterns. They have investigated the performance of SSF and 

BSSF as an indexing technique for efficient retrieval of content-

based queries on temporal patterns.  

Yangjun Chen and Yibin Chen [21], [22] have proposed a new 

method to organize signature file into a tree structure, called a 

signature tree, to speed up the signature file scanning and query 
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evaluation. They have also analyzed the average time complexity 

of searching a signature tree and maintenance of signature trees. 

Ritambhra and Arpita Gopal [18] have studied the performance of 

Signature Trees  as an indexing technique for efficient retrieval of 

content-based queries on temporal patterns.  

Ritambhra and Arpita Gopal [17] have studied the performance of 

Extendible Signature Hashing [ESHF] as an indexing technique 

for efficient retrieval of content-based queries on temporal 

patterns. They have also compared the performance of ESHF 

against SSF and BSSF implementations of signature files and 

have reported that ESHF outperforms the other two 

implementations. 

Y. Ishikawa, H. Kitagawa, and N. Ohbo [23] have applied the 

signature based indexes for queries involving set-valued attributes 

in OODBs. They have considered two implementations of 

signature files: the sequential signature files and bit-slice 

signature files.  

Helmer et all have studied [19] Extendible hashing, proposed by 

Fagin R, Nievergelt J, Pippenger N, Strong HR [16]. They have 

modified this indexing method to use signatures instead of hash 

keys.  Theses signature/reference pairs get distributed among 

various buckets. They investigated the performance of four index 

structures for set-valued attributes (sequential signature files, 

signature trees, extendible signature hashing, and inverted lists). 

The indexes were evaluated on three forms of set-valued queries 

— equality queries, subset queries, and superset queries. 

The comparative studies so far   focused mainly on efficient 

response time. Some other criteria like space overhead, index 

construction time and scalability were, however, not handled. 

 Since the set-based indexes do not consider the ordering of items 

in the sets, whereas ordering is important for indexing and 

retrieval of temporal patterns, new indexing techniques have been 

proposed as well [13], [2]. This involves converting the sequential 

patterns into equivalent sets that accommodate the ordering of 

items. After that set-based indexing methods can be applied on 

the equivalent sets. 

3. PRELIMINARIES 

3.1 Temporal Patterns 
The temporal patterns [1] described in this paper consist of two 

components: a set of state intervals and a set of relationships 

between those state intervals that represent the order of states 

within the pattern [9]. These relationships can be before(b), 

meets(m), overlaps(o), is-finished-by(fi), contains(c) and starts(s) 

[8]. Fig. 1 shows some temporal patterns defined over set of states 

S= {A, B, C, D} and set of relationships Rel = { =, b, m, o, fi, c, 

s}. A pattern β is a subpattern of pattern α, if β can be obtained 

from α by removing some state intervals.  

 

 

Figure 1.  Temporal Patterns 

3.2 Sequential Patterns 
A sequential pattern is a large and maximal sequence among the 

set of all large sequences [4]. If a sequence s of itemsets is 

denoted by s1 s2..sn , where each sj is an itemset, it is called an 

n-sequence. E.g (AB) (F) (BC) (DE)  is a 4-sequence. A 

sequence a = a1 a2 . . an  is said to be contained in another 

sequence b = b1 b2 . . bm  if there exist integers i1 < i2 < . . < in, 

such that a1 ⊆ bi1, a2 ⊆ bi2, . . . , an ⊆ bin. That is, an n-

sequence a is contained in a m-sequence b if there exists an n-

length subsequence in b, in which each itemset contains the 

corresponding itemsets of a. For example, the sequence  

(A)(BC)  is contained in (AB) (F) (BC) (DE)   but not in (BC) 

(AB) (C) (DE) . Further, a sequence is said to be maximal in a set 

of sequences, if it is not contained in any other sequence. 

Consider an example of a database with 5 customers whose 

corresponding transaction sequences are as follows:  

(1) (AB) (ACD) (BE) ,  

(2) (D) (ABE) ,  

(3) (A) (BD) (ABEF) (GH) ,  

(4) (A) (F) , and  

(5) (AD) (BEGH) (F) .  

All customer transaction sequences listed above, are maximal in 

this set of sequences except the sequence of customer 4, which is 

contained in, transaction sequence of customer 3. 

3.3 Episodes  
Episodes are patterns that occur sufficiently often in the data 

presented as a single long sequence [14]. This single event 

sequence is denoted by  (E1, t1), (E2, t2), .. , where Ei takes 

values from a finite set of event types E, and ti is an integer 

denoting the time stamp of the ith event and i, ti ≤ ti+1.   

For example, event sequence with 10 events in it can be written 

as: 

(A, 2), (B, 3), (A, 7), (C, 8), (B, 9), (D, 11), (C, 12), (A, 13), (B, 

14), (C, 15)  

An episode α is defined by a triple (V, ≤, g), where V is a 

collection of nodes, ≤ is a partial order on V and g : V → E is the 

mapping that associates each node in the episode with an event 

type. Thus, an episode is just a partially ordered set of event 

types. For example, (A → B → C) is a 3-node episode. An 

episode is said to occur in an event sequence if there exist events 

in the sequence occurring with exactly in  the same order as that 

prescribed in the episode. For example, in the event sequence 



2nd International Conference and workshop on Emerging Trends in Technology (ICWET) 2011 

Proceedings published by International Journal of Computer Applications® (IJCA) 

53 

above, the events (A, 2), (B, 3) and (C, 8) constitute an 

occurrence of the episode (A → B → C). 

An episode β is said to be a subepisode of episode α if all the 

event types in β appear in α as well, and if the partial order among 

the event types of β is the same as that for the corresponding 

event types in α. For example, (A → C) is a 2-node subepisode of 

the serial episode (A → B → C) while (B → A) is not a 

subepisode.  

3.4 Content-based Queries  
If D is a database of patterns and q is a query pattern, the content-

based queries in this research include the following: 

1. Subpattern queries, i.e. those patterns in D that contain q. 

2. Superpattern queries, i.e. those patterns in D that are contained 

in q.  

3. Equality queries, i.e. patterns in D that are equal to q. 

The problem of selecting a suitable implementation of signature 

file for efficient content-based retrieval of patterns can then be 

formally defined as follows: 

Given a database D of discovered temporal patterns, compare 

various implementations of signature-based indexes with respect 

to various criteria like number of false drops generated, query 

response time, index construction time, space requirements of the 

index. Further, based on these results and semantics of sequential 

patterns and episodes, suggest a suitable implementation of 

signature file as index for  their databases.  

4. SIGNATURE BASED INDEXES 

4.1 Signature Files 
A signature is a superimposed bit pattern generated from the 

values of the attributes. The target signature is obtained by the 

bitwise union of all the element signatures of the target set. When 

applying the technique of superimposed coding, each element of a 

given set is mapped via a coding function to a bit field of length 

F, called signature length, where exactly m < F bits are set. These 

bit fields are superimposed by a bitwise or operation to yield the 

final signature of the set [5].  

If T and Q denote the target set and the query set respectively, 

commonly used set-valued queries are  

a) Subset query ( Q  T). The query set is the subset of target set. 

b) Superset query ( Q T). The query set is the superset of target 

set. 

c) Equality query (Q  T). The query set is equal to the target set. 

The important parameters here are the length of the signature 

denoted as ‗F‘ and the weight of the signature denoted as ‗m‘.   

Retrieval using signature files is based on the inexact filter. They 

provide a quick test, which discards many of the non-qualifying 

elements and qualifying elements become drops. This step is 

called the filtering step. The second step is false-drop resolution. 

In this step, each drop is retrieved and verified. The drops which 

do not satisfy the query condition are called the false-drops and 

those which satisfy the condition are called actual drops.  False 

drops occur due to collision of element signatures and the 

superimposed coding method used to generate the signatures.  The 

false drops affect the number of block accesses and hence the 

processing time.  

4.2 Sequential Signature Files (SSF) 
In a sequential signature file, a set of signature/reference pairs is 

sequentially stored. When a new signature arrives it is just 

appended at the end of the file. To retrieve a pattern using SSF, a 

full scan of the file is done looking for signatures which match 

with the query signature [21].  

4.3 Bit-Slice Signature Files (BSSF) 
The signatures in BSSF are stored in a column wise manner. If the 

length of the signatures is F, then all the signatures will be stored 

in F files, in each of which one bit per signature for all the 

signatures is stored. To retrieve using BSSF index, the signatures 

are checked slice-by-slice rather than each signature to find 

matching signatures.  Only those bit-slices, for which there is a 

one in the query signature [21] were retrieved.  

4.4 Extendible Signature Hashing (ESHF) 
In extendible signature hashing for database of temporal patterns 

[19] signatures are used instead of hash keys. Let sigd be a prefix 

of signature sig consisting of first d bits.  

The index is divided into two parts, the directory and the buckets 

[16]. A bucket contains tuples consisting of the signature of the 

data item and reference to the data item. The directory begins with 

the header that holds the value for the (global) depth d. The 

directory has 2d entries which are references to the buckets. When 

searching for a pattern, sigd of the query pattern is determined to 

find the reference to the bucket where the pattern is to be found. 

The entries in the directory are not necessarily distinct, so there 

may be more than one reference in the directory pointing to the 

same bucket. The local depth d‘ of a bucket specifies the length of 

prefix actually used in this bucket, i.e. only the first d‘ bits of the 

signatures of all entries in the bucket must be equal.  

4.5 Signature Tree (STF) 
In a signature tree [21], [22], each path is a signature identifier, as 

defined below, and is not a continuous piece of bits.  

Let si be a signature of length m. si = si[1] si[2]…si[m] where 

each si[j]  {0,1}, j = (1,…,m). si(j1,…,jh) denotes a sequence of 

pairs with regard to si: (j1, si[j1]), (j2, si[j2])…(jh, si[jh]), where 

1  jk  m for k  {1,…,h}. 

Signature Identifier: Let S = s1, s2,..., sn be a signature file. 

Consider si(1  i  n). If there exists a sequence: j1,...,jh such that 

for any k  i (1  k  n), if si(j1,..., jh)  sk(j1,...,jh), then si(j1,..., 

jh) is an identifier of si with regard to S. 

Signature Tree: A signature tree for the signature file S, where si 

 sj for i  j and |sk| = m for k =1,...,n, is a binary tree T such that  

1. For each internal node of T, the left edge is always labeled 

with 0 and the right edge is labeled with 1. 

2. T has n leaves labelled 1,2,...,n, used as pointers to n 

different positions of s1, s2,..., sn in S.  

3. Each internal node v is associated with a number, denoted by 

sk(v), to tell which bit will be checked. 

5. SIGNATURE FILES AS INDEXES FOR 

DATABASE OF PATTERNS 
Since temporal patterns involve sets of states and time ordered 

relationship among these states, traditional indexes cannot be 

used. There are three reasons for using signatures to encode 
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temporal patterns. First, they are of fixed length and hence very 

convenient for index structures. Second, comparison operators on 

signatures can be implemented by efficient bit operations. Third, 

signatures are more space efficient than explicit pattern 

representation.   

5.1 Preserving Ordering among States 
To apply any signature-based indexing technique for indexing a 

database of temporal patterns, the ordering of states and 

relationships inherent to temporal patterns must be preserved.  

Thus using the techniques discussed in [13], [2] the temporal 

pattern is first converted into equivalent sets and then the 

signatures were generated from there. Table 1 below shows the 

equivalent sets and signatures generated for temporal patterns 

shown in Figure1. 

TABLE I.   EQUIVALENT SETS AND SIGNATURES OF TEMPORAL 

PATTERNS 

 

Given two temporal patterns p and q and their corresponding 

signatures sigp and sigq, these signatures have the following 

properties: 

1. p   q → sigp  sigq = sigq 

2. p   q → sigp  sigq =  sigp 

3. p =  q → sigp = sigq 

Here, ‗ ‘ represents bit-wise AND operation. The signature file of 

temporal patterns in database D can then be created as follows: 

For each temporal pattern p  D, its equivalent set E(p) is 

calculated, and then, its signature sigp is generated. This signature 

together with the temporal pattern identifier (pid) is inserted into 

the signature file [7, 15, 16]. 

5.2 Parameters of Investigation 
This study aimed at investigating the suitability of signature files 

as indexes for database of temporal patterns, Since there are 

various implementations of signature files available, it was natural 

to be able to rank these implementations for various parameters 

like the type of queries it is used for, query retrieval time, index 

construction cost which includes time to build the index as well 

space requirements if any. The parameters chosen for this study 

are guided by the following points. 

1. Different implementations of signature files used as indexes for 

a database of temporal patterns were to be investigated for their 

suitability.  

2. The type of queries considered here is content-based queries.  

3. The database of temporal patterns is generated by temporal data 

mining and does not have many deletions and modifications.  

4. The insertions are bulk insertions, frequency of which depends 

on the domain chosen. Thus, when there is a bulk load of new 

insertions, the index would require to be extensively modified. 

Guided by these, the following investigation parameters were 

decided: 

a)  Number of false drops generated during subpattern, 

superpattern and equal pattern queries. 

b) Index construction time 

c) Query response time i.e. the performance of the index 

d) Index size 

6. EXPERIMENTAL SETUP 
Extensive experiments were conducted to explore various 

implementations of signatures files as indexes under the criteria 

chosen. The following sections give the details of these 

experiments and experimental parameters.   

6.1 Hardware/software Platform 
All programs were written in C++ Language. The experiments 

were conducted on a 2-GHz Intel Core 2 Duo PC with 1 GB bytes 

of  RAM running Windows XP Professional.  

6.2 Experimental Parameters 
Table 2 shows the experimental parameters chosen for this 

comparative study. During the experiments, the signature size F 

was varied from 8 to 128, keeping the weight m of the element 

signatures fixed at 1. Number of states N was chosen to be 100 

and Database size was varied from 10,000 to 50,000. 

6.3 Generating Data 
Database of temporal patterns was generated synthetically as 

below: 

First the size of a pattern was generated using Poisson distribution 

with mean |T| = 5. The states were picked up randomly from set 

of states. Then the relationships among the states were picked 

randomly from the set of relationships. Initially, a database of 

10000 patterns was generated this way.  To build the index on this 

database of temporal patterns, each temporal pattern was 

converted into an equivalent set using state mapping and 

relationship mapping functions [2],[13].  

TABLE II.  EXPERIMENTAL PARAMETERS 

Symbol Meaning 

F Signature Size 

m Weight of signature  

N Number of States 

|D| Size of Temporal Patterns Database 

|T| Average size of Temporal Pattern 

Q Size of Query Pattern 

6.4 Generating Queries 
To ensure a hit for the pattern to be queried, query patterns were 

generated as follows:  

For equality queries, a pattern from the database was picked up 

randomly. For subpattern queries, the temporal pattern of size 5 

was randomly selected, and then the states from the selected 

pattern starting from the last state were individually removed, 

resulting in a set of five queries. A similar method was performed 
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for super pattern queries by selecting a temporal pattern of size 10 

to generate a set of five queries. 

7. RESULTS 

7.1 Index Size 
In this experiment, the size of the index for each implementation 

of signature file was compared on two parameters. First, the 

signature size was varied, keeping the database size fixed and 

change in index size was observed (see Figure 2). Also keeping 

the signature size fixed, database size was varied from 10,000 

patterns to 50,000 and change in index size was noted (see Figure 

3). It was observed that for SSF, as the signature size is varied, 

there is no change in the index size and it grows linearly with 

change in database size.  

For BSSF, the index size increased exponentially with the 

increase in signature size but increased linearly with the increase 

in database size.In case of ESHF, with the increase in signature 

size as well as database size, the size of index increased linearly, 

in a definite pattern. 

While index size for these three implementations was only small 

percentage of size of the database, this size was almost equal to 

the database size for STF. Thus the space overhead was found to 

be maximum case of STF amongst all the implementations. 

7.2 Index Building Time 
In this experiment, the index building time was compared with the 

increase in signature size as well as increase in database size. It 

was observed that, increasing the signature size did not 

significantly impact the index building time in any of the indexing 

techniques. The index building time increased proportionately 

with increase in database size across all indexing techniques (see 

Figure 4). 
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Figure 2.   Index Size variation with signature size for different implementations of Signature files 
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Figure 3.  Index Size variation with database size for different implementations of Signature files 

 



2nd International Conference and workshop on Emerging Trends in Technology (ICWET) 2011 

Proceedings published by International Journal of Computer Applications® (IJCA) 

56 

Index Building Time

0

20

40

60

80

100

10000 20000 30000 40000 50000

Database Size (No. of Patterns)

Ti
m

e(
se

c

SSF

BSSF

ESHF

STF

 

Figure 4.  Index building time for different implementations of Signature file

7.3 Number of False Drops 

7.3.1 Subpattern Query 
In this experiment, the effect of change in  signature size on the 

number of false drops in Sub pattern  of queries was observed. 

The optimal parameters for each query type in the experimental 

environment were determined. Fixing the size of the database |D| 

= 50,000, the average size of temporal pattern |T| = 5, and the 

number of states N = 100, the size of signature F was varied 

from 8 to 128 bits and the number of false drops was measured. 

Figure 5 shows the number of false drops for different signature 

sizes for different implementations of signature files. As can be 

seen, the number of false drops consistently decreased as the 

size of the signature increased, for each of the implementations. 

The number of false drops was also influenced by the size of the 

query pattern. For SubPattern Query, the larger the query 

pattern, the lower the number of false drops. Out of all the 

implementations, the ESHF performed the best for all signature 

sizes. For this implementation, the number of false drops 

became almost nil for higher signature size.  SSF scored very 

low in this parameter, with number of false drops almost equal 

to the number of patterns for lower signature sizes and 

improving only marginally for higher signature sizes.
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Figure 5.  Number of false drops for different implementations of Signature files for subpattern query

7.3.2 Superpattern Query 
In this experiment, the effect of change in  signature size on the 

number of false drops in Super Pattern type of queries was 

observed. The optimal parameters for each query type in the 

experimental environment were determined. Fixing the size of 

the database |D| = 50, 000, the average size of temporal pattern 

|T| = 5, and the number of states N = 100, the size of signature F 

was varied from 8 to 128 bits and the number of false drops was 

measured. Figure 5 shows the number of false drops for different 

signature sizes for different implementations of signature files. 

For SuperPattern Query, the larger the query pattern, the higher 

the number of false drops (see Figure 6). In this category also, 

the number of false drops for ESHF was the lowest as compared 

to SSF, BSSF and STF. It was also observed that for BSSF and 

STF, the superpattern search reduces to searching the whole 

index and tree respectively. This is due to the condition of 

superpattern queries listed in section 4.5. For STF, since it is 

build on signature identifiers, the whole tree needs to be 

traversed to reach to each leaf nodes to get the signatures and 

then check the condition for superpatterns. Nonetheless, it is 

better than SSF, because the search here reduces to binary search 

as compared to sequential search in SSF. 

7.4 Query Retrieval Time 
This experiment used the above data sets to compare the relative 

performance of SubPattern Query and Super Pattern Query for 

different implementations of signature files. Each method was 
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run on each of the queries used in the previous experiment. It 

was observed that the query processing times is proportional to 

the number of false drops from the previous experiments. ESHF 

index performs better than SSF, BSSF and STF. This is because 

for smaller size signature size, the number of false drops is so 

high that almost every pattern gets selected in the database and 

hence must be retrieved in the verification step. While in ESHF,  

as shown the previous experiment, the number of false drops 

reduced considerably and hence the processing time.  Thus the 

retrieval times using SSF or BSSF are much more as compared 

to STF but ESHF performed the best.  
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Figure 6.  Number of false drops for different implementations of Signature files for superpattern query

8. SEMANTIC ANALYSIS OF OTHER 

PATTERNS 

8.1 Sequential Patterns 
As defined in section 3.2, sequential patterns are large and 

maximal sequences among a set of sequences. Sequential 

patterns are represented as sequences of itemsets i.e. each 

itemset is again set of items [4]. Thus a sequential pattern is 

essentially a large and maximal sequence of sets. Thus to index 

a database of discovered sequential patterns, we need to use 

those techniques which are used for indexing set-valued 

attributes. Signature based techniques are thus suitable to index 

a database of sequential patterns. Further, here also ordering of 

sets of items is important and we treat a sequential pattern as 

ordered sets of sets.  Therefore, using the techniques discussed 

in [13], [2], we will first convert them into equivalent sets to 

preserve ordering and then apply signature-based indexing 

techniques. Next we look at the domains where such a data is 

available. One immediate application is the buying patterns of 

customers in a super market [4]. We generate sequential patterns 

from the data available for each customer in their subsequent 

visits to the supermarket. We analyse this to figure out how the 

sale deviate and what generally are the peak periods for such 

deviations. If we get such deviations during a particular period 

of the year or month over sufficient range of data, it becomes an 

interesting pattern and can be used to predict sales in the 

succeeding years. Therefore generally such patterns are used for 

predictive modelling. Now when we a have database of such 

sequential patterns, what would the type queries be to retrieve 

patterns for prediction. After studying many similar systems, we 

reached to the conclusion that most of the queries are super 

pattern queries or equality queries. Additionally, since these 

types of patterns are found in transaction oriented systems, the 

index should be efficiently scalable, with a proportional increase 

in storage requirements. 

Keeping these semantics in mind and the results shown above, it 

is suggested that either SSF or ESHF are more suitable for such 

type of patterns. As can be seen, the storage requirements 

increase proportional to the increase in database size, the 

number of false drops is low and both are suitable for all types 

of content-based queries. For STF and BSSF, the storage 

requirements are very high and grow very fast with the increase 

in database size, they would not be suitable. Additionally the 

inherent nature of these two techniques is more suited for 

subpattern queries.   

8.2 Episodes 
As defined in section 3.3, an episode interpretation says that the 

events in g(V) have to occur in the order described by . [14]. 

Since the episodes are sequence of events and number of events 

in different episodes may vary, we can use indexing techniques 

for set-valued attributes. Additionally, the ordering of events in 

an episode is important. Hence we can use the techniques 

discussed in [13], [2] to convert the episode into equivalent set, 

where ordering can be preserved. Thus a database of frequent 

episodes can be indexed using signature-based indexing 

techniques. Next, we analyse the domains where the episode 

discovery may be useful.  

The episode discovery was originally applied to analysing alarm 

streams in a telecommunication network [14]. Another 

application is the mining of data from assembly lines in 

manufacturing plants [15]. The analysis of episodes here could 

help in understanding the hidden correlations between different 

fault conditions and hence improving the performance and 

throughputs of the assembly line. In manufacturing plants, 

frequent episode analysis may help in some process 

improvements by studying the frequent episodes in one line and 

comparing them to those in the other. Frequent episode 

discovery has also been applied to web-navigation logs. Thus we 

reach to the conclusion that framework of episode discovery 

falls under descriptive modelling where we are able to 

summarize a given situation.  We now look at the majority of 

queries be in such situations. From a detailed analysis of 

applications above, it could concluded that majority of the 

queries would be subpattern queries or equality queries.  
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Keeping these semantics in mind, and results shown above it can 

be suggested that BSSF and STF, which are designed inherently 

for subpattern queries, would be suitable candidates. Since 

episode discovery is descriptive modelling, there may not be 

large changes to the underlying data, thus there is not much 

change in the database of episodes.  

 

9. CONCLUSION 
The paper presented a study of different implementations of 

signature files as index on a database of temporal patterns for 

efficient content-based retrieval of temporal patterns. The 

comparison was done on various parameters like index building 

time, space overhead, number of false drops and query 

performance. Each of these parameters was tested on different 

implementations, for different signature sizes and database sizes. 

ESHF performed best in all the parameters. However, space 

overhead becomes erratic as the database size grows or the 

signature size is increased. While STF shows a large space 

overhead, SSF was voted out for exceedingly large number of 

false drops. Both BSSF and STF are found to be not so suitable 

for superpattern queries. Additionally, STF has the problem of 

generating skewed trees. Based on these results and semantic 

analysis of sequential patterns and episodes, we also suggested 

which implementations would be suitable for databases of these 

patterns. These suggestions, however, are empirical and have to 

be verified experimentally. The comparisons were also done on 

synthetic datasets only. These experiments can also be 

performed for actual data as a future course of action.  
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