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ABSTRACT 
The economic emission dispatch (EED) assumes a lot of 

significance to meet the clean energy requirements of the 

society, while at the same time minimising the cost of 

generation. The solution schemes in an attempt to arrive at the 

global best through the use of evolutionary algorithms are 

however inadequate to cater to problems of large size.  The 

search based EED approaches are computationally inefficient 

particularly for problems with large number of  

 

 

 

 

 

 

 

 

 

decision variables. This paper attempts to develop a new SA 

based modified approach with a single decision variable to solve 

the EED problem. The philosophy involves the introduction of a 

new decision variable through a prudent mathematical 

transformation of the relation between the decision variable and 

the optimal generations. It thus yields a reduction in the number 

of problem variables and contributes to realistically enhance the 

performance of the existing heuristic strategies. The feasibility 

of the proposed approach is evaluated through two test systems 

and the results are compared with the available methods to 

highlight its suitability for online applications. 

 

 

Nomenclature 

COST    cost function 

ELD   economic load dispatch 

EED   economic emission dispatch 

PA   proposed algorithm 

SA       simulated annealing 

ESA   existing SA based ELD 

iii cba &   fuel cost coefficients of  thi generating plant  

iii fed &   emission coefficients of  thi generating plant  

iIC    incremental cost at thi generation plant 

maxmin
& ii ICIC  minimum and maximum values of iIC  respectively 
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ng                      number of generating plants 

DP    total power demand  

GiP    generation at thi generating plant  

maxmin
&

iGiG
PP    minimum and maximum of GiP  respectively 

( )Gii PF   fuel cost function of  thi generating plant in h/$  

( )Gii PE   emission cost function of  thi generating plant in hkg /  

ih    price penalty factor of  thi generating plant in kg/$  

tT      current temperature 

1+tT     next temperature 

λ    incremental cost of received power  

maxmin & λλ   minimum and maximum values of λ  respectively 

Ф   objective function to be minimized 

TΦ    augmented objective function to be minimized 

α     cooling coefficient 

)(TP     transition probability in the interval [0,1] 

F∆     reduction in cost of the trial solution compared with the current  

solution 

 

 

1.0 INTRODUCTION 
Economic Load Dispatch (ELD) plays an important role in 

maintaining a high degree of economy and reliability in power 

system operational planning. It is a computational process of 

allocating the total required generation among the available 

generating units subject to load and operational constraints such 

that the cost of operation is minimum. Various techniques such 

as lambda iteration, gradient search, linear programming, 

dynamic programming and Lagrangian relaxation are used to 

solve ELD problem [1-2]. Recently intelligent algorithms such 

as Pattern Search [3], Neural Networks [4-5], Genetic Algorithm 

[6], Simulated Annealing (SA) [7], Evolutionary Programming 

[8] and Particle Swarm optimisation [9] are applied to solve 

ELD problems.  

 
Operating at absolute minimum cost can no longer be the only 

criterion for dispatching electric power due to increasing 

concern over the environmental considerations. The generation 

of electricity from fossil fuel releases several contaminants, such 

as sulphur dioxides, nitrogen oxides and carbon dioxide into the 

atmosphere. The pressing public demand for clean air and the 

enforcement of environmental regulations in recent years have 

changed the dispatch problem with conflicting objectives of 

minimising both the fuel cost and the emissions.  

 

Several methods have been suggested for solving the multi-

objective economic emission dispatch (EED) problem. A direct 

NR method based on alternative jacobian matrix [10], a 

recursive approach based on dynamic programming [11], a 

simplified recursive approach [12],  a progressive articulation of 

preference information based optimisation technique [13] and an 

analytical strategy based on mathematical modelling [14] have 

been presented to handle combined EED problems. In recent 

years, heuristic optimisation techniques have aroused greater 
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interest due to their flexibility, versatility and robustness. These 

evolutionary approaches such as an interactive fuzzy satisfying 

based SA technique [15], particle swarm optimisation based 

goal-attainment method [16], a multiobjective genetic algorithm 

[17] and a fuzzified multi-objective particle swarm optimisation 

algorithm [18] have been extensively articulated to obtain the 

global optimal solution. However, on account of the fact that 

EED problems necessarily involve a large number of problem 

variables, the heuristic approaches have been found to suffer 

from huge computational burden and end up with consuming 

exhaustively large execution times. Therefore an efficient 

strategy that is independent of the number of generating plants 

in the system,  is formulated with a single decision variable and 

invokes the use of SA to solve for EED problem in this paper  

2.0  Problem Formulation 
The aim of EED is to minimise the total generation cost and 

emissions of a power system for a given load while satisfying 

various constraints [1-2]. The objective function is thus obtained 

by blending the emission cost function with the fuel cost 

function through the use of a price penalty factor [19] and the 

constrained optimisation problem is formulated as 
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2.1 Classical λ  iteration method [1] 

The augmented lagrangian function for the ELD problem can be written as 
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The co-ordination equation from the above function can be obtained as  
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The above equation can be solved iteratively for EED imposing on itself the generator power limits and the power 

balance equation as constraints. This classical lambda-iterative technique is in use for a long time as it is simple and 

easy for online implementation.  
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3.0 Simulated Annealing 
The SA algorithm, proposed by Kirkpatrick et al in 1983 [20], is 

a powerful optimisation technique, which exploits the 

resemblance between a minimisation process and the annealing 

process of the molten metal. The annealing process begins with 

a high temperature and the metal is slowly cooled so that the 

system maintains the thermal equilibrium at every stage, until 

the energy of the system acquires the global minimum value. 

The physical annealing process is simulated in the SA technique 

for the determination of global or near-global optimal solutions 

of the difficult combinatorial optimisation problems involving 

non-linear objective functions and complex constraints. A 

temperature like parameter, T, is defined and gradually reduced 

in the optimisation process of SA. At each temperature, an 

iterative procedure, proposed by Metropolis et al [21] is 

performed.  

 

A trail solution is obtained by perturbing the current solution 

according to a Gaussian probabilistic distribution function. If 

the cost of the trial solution is lower than that of the current 

solution, then it is accepted and used to generate another trial 

solution; else, the solution is accepted only when its transition 

probability of acceptance )(TP , given by Boltzmann 

distribution, is greater than a randomly generated number 

between 0 and 1.  

tT

F

eTP

∆−

=)(
                                                             

At each temperature, the procedure for generating and testing 

the trial solutions are repeated for an appropriate period of time 

(i.e. for an appropriate number of iterations) in order to allow 

the algorithm to settle into its thermal equilibrium i.e. a balanced 

state. If this time is too short, the algorithm is likely to converge 

to a local minimum. The combination of temperature steps and 

cooling times is known as the annealing schedule, which is 

usually selected empirically. The temperature is then reduced by 

the following geometric function 

tt TT ⋅=+ α1                                    (8) 

and the above mentioned iterative process is repeated till there is 

no significant improvement in the solution after a prespecified 

number of iterations. It can also be terminated when the 

maximum number of iterations is reached. It is to be noted that 

accepting deteriorated solutions in the above process enables the 

SA solutions to jump out of the local optimum solution points 

and paves the way to seek global optimum solutions.  

4.0 Proposed Methodology 
In all the existing SA based approaches for ELD, the real power 

generation of all generating units are considered as the decision 

variables that makes the size of the problem vary large, slow 

down the speed of these algorithms and hence not suitable for 

systems having larger number of generating units. In the 

proposed approach, the λ  of the classical λ - iteration 

approach is considered as the only decision variable irrespective 

of the number of generating units. The real power generation of 

all the generating plants are considered as the problem 

dependant variables and expressed as a function of λ . In this 

approach, the real power generations are computed using Eq. (6) 

for each λ value obtained during the SA iterations.   

 

In the existing SA based ELD, the ranges for decision variables 

are the implicit lower and upper limits on real power generation 

of all the plants. But in the proposed approach, the lower and 

upper limits of the decision variable- λ  depend on the 

minimum and maximum power demands that the system can 

supply. The first step in obtaining these values is to compute the 

lower and upper incremental cost values by substituting the 

respective generation power limits in Eq. (6) for all the plants as

  

 

[ ] [ ]
[ ] [ ]iiiGiiiii

iiiGiiiii

ehbPdhaIC

ehbPdhaIC

+++=

+++=
maxmax

minmin

2

2

      
ng,=i L2,1,

                 (9) 

 

The next step is choosing the lowest and highest incremental cost values, obtained from Eq. (9), as the limits for λ .   

 

( )
( )maxmax

2
max

1
max

minmin
2

min
1

min

,,,

,,,

ng

ng

ICICICMax

ICICICMin

L

L

=

=

λ

λ
                                                        (10) 

 

The SA searches for the optimal solution by minimising a cost function. In the proposed formulation, the net fuel cost 

all the generating plants is considered as the cost function. However, a penalty term is included in the cost function to 

handle the explicit power balance constraint. The penalty term increases the cost of the function for infeasible 
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solutions. The cost function is therefore built as a blend of fuel cost function and the power balance constraint through 

the use of a penalty factor as 

 

Minimise  
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The number of decision variables in this formulation is always one, whereas the existing SA based approaches require 

the generation of all the plants as the variables. This reduction in decision variables will reduce the overall 

computational burden and improves the convergence rate. The algorithm of the proposed solution methodology for 

solving the ELD problem is outlined. 

 

1. Read the input data of the EED problem 

2. Set  1=i  

3. Choose initial temperature tT , cooling coefficient α , number of iterations for each temperature tN  

and maximum number of iterations maxN . 

4. Choose a random start point oλ  in the specified range 

5. Repeat the following till 0% =tNi   

a. Select a random point iλ  from the neighbourhood of oλ  within the specified range. 

b. Solve Eq. (6) for GiP  while imposing the limits given by Eq. (3).  

c. Calculate iCOST  using Eq. (11) 

d. If oi COSTCOST <  then accept the trial solution by setting io λλ =   

Else select a random number ℜ  in the range [0,1] 

 if ℜ>)(TP , then io λλ = , otherwise discard the trial point 

e. Check for convergence by comparing the number of iterations i  with maxN . If converged, stop 

and print the ELD corresponding to the oλ . Otherwise, set 1+= ii  

6. Reduce the temperature by the factor α  using Eq. (12) and go to step (5). 

5.0  Simulation Results 
The proposed algorithm is tested on two examples, a six and an 

eleven generator systems, the data of which are available in 

Tables 1 and 2 respectively. The simulation is performed over a 

wide range of load demand using Matlab tool box and the 

results of PA are compared with that of classical −λ iteration 

method, the methods suggested in References [11] and [13], and 

existing SA (ESA) strategy. 

 

The generator allocations for the different load demands for both 

systems are tabulated in Tables 3 and 4 respectively. The fuel 

cost for both test systems are compared in Tables 5 and 6 

respectively. It is observed that the PA allows to incur the same 

cost as that of the traditional −λ iteration method, thus 

validating the performance of the new approach. The fuel cost 

for the other two methods cited in ref [11] and [13] also closely 

fall in line. It is only in the ESA, where the cost accrues to be 

slightly higher. 

 

The emissions for the examples under study are compared in 

Tables 7 and 8 respectively. It is worthy to note that the 

emissions are exactly as that of −λ iteration method thus 

once again illustrating the merits of the new strategy. The 

emissions of the remaining two are also similar except that in 

ESA, where it is slightly lower. This is due to the fact that the 

increased fuel cost in ESA is augmented by a considerably 

smaller emission. 
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It is highly satisfying to note from Table 9 that the normalised 

execution time (NET) of PA is very low when compared to ESA 

and it is almost constant to both the systems, thus emphasising 

the fact that the performance of the new algorithm is 

independent of system size. It has to be acknowledged that in 

the case of ESA, the NET is much larger and almost increases 

exponentially with the system size. 

 

Table 1  Data for 6 Generator system 

 

Gen 

No 
Fuel cost coefficients Emission coefficients Generation limits 

a  b  c  d  e  f  
min

GP  
max

GP  

1 0.1525 38.540 756.800 0.00420 0.3300 13.860 10 125 

2 0.1060 46.160 451.325 0.00420 0.3300 13.860 10 150 

3 0.0280 40.400 1050.00 0.00683 -0.5455 40.267 35 225 

4 0.0355 38.310 1243.53 0.00683 -0.5455 40.267 35 210 

5 0.0211 36.328 1658.57 0.00460 -0.5112 42.900 130 325 

6 0.0180 38.270 1356.66 0.00460 -0.5112 42.900 125 315 

 
Table 2  Data for 11 Generator system 

 

Gen 

No 
Fuel cost coefficients Emission coefficients Generation limits 

a  b  c  d  e  f  
min

GP  
max

GP  

1 0.00762 1.92699 387.85 0.00419 -0.67767 33.93 20 250 

2 0.00838 2.11969 441.62 0.00461 -0.69044 24.62 20 210 

3 0.00523 2.19196 422.57 0.00419 -0.67767 33.93 20 250 

4 0.00140 2.01983 552.50 0.00683 -0.54551 27.14 60 300 

5 0.00154 2.22181 557.75 0.00751 -0.40060 24.15 20 210 

6 0.00177 1.91528 562.18 0.00683 -0.54551 27.14 60 300 

7 0.00195 2.10681 568.39 0.00751 -0.40006 24.15 20 215 

8 0.00106 1.99138 682.93 0.00355 -0.51116 30.45 100 455 

9 0.00117 1.99802 741.22 0.00417 -0.56228 25.59 100 455 

10 0.00089 2.12352 617.83 0.00355 -0.41116 30.45 110 460 

11 0.00098 2.10487 674.61 0.00417 -0.56228 25.59 110 465 
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Table 3  Generation allocations for 6-generator system in MW 
 

DP  1GP  2GP  3GP  4GP  5GP  6GP  
500 19.999 14.899 93.051 90.064 143.647 138.339 

600 31.723 28.662 108.405 103.960 166.507 160.744 

700 43.446 42.426 123.758 117.855 189.366 183.148 

800 55.170 56.189 139.112 131.751 212.225 205.552 

900 66.894 69.953 154.466 145.647 235.084 227.957 

1000 78.617 83.716 169.820 159.542 257.943 250.361 

1100 90.341 97.479 185.174 173.438 280.802 272.765 

 

Table 4 Generation allocations for 11-generator system in MW 
 

DP  
1GP

 

2GP

 

3GP

 

4GP

 

5GP

 

6GP

 

7GP

 

8GP

 

9GP

 

10GP

 
11GP

 

1000 85.61 76.67 87.26 78.50 47.92 79.33 49.77 129.60 122.37 119.60 123.40 

1250 94.62 82.69 97.02 102.33 62.73 102.53 64.85 165.51 156.89 160.27 160.56 

1500 103.63 88.71 106.77 126.17 77.54 125.73 79.93 201.42 191.41 200.95 197.74 

1750 112.64 94.73 116.53 150.01 92.35 148.91 95.01 237.33 225.93 241.62 234.91 

2000 121.65 100.75 126.29 173.85 107.15 172.16 110.10 273.23 260.45 282.30 272.08 

2250 130.66 106.76 136.05 197.69 121.96 195.37 125.18 309.14 294.97 322.97 309.26 

2500 139.67 112.78 145.80 221.53 136.77 218.58 140.26 345.05 329.48 363.65 346.43 

 

Table 5 Comparison of fuel cost in h/$  for 6-generator system  
 

DP  −λ iteration Ref [11] Ref [13] ESA PA 

500 27092.42 27092.46 27092.46 27096.47 27092.42 

600 31628.63 31628.64 31628.63 31629.99 31628.63 

700 36313.92 36313.94 36313.92 36315.75 36313.92 

800 41148.31 41148.33 41148.32 41152.50 41148.31 

900 46131.86 46131.85 46131.87 46133.67 46131.86 

1000 51264.41 51264.49 51264.47 51266.42 51264.41 

1100 56546.15 56546.18 56546.17 56561.31 56546.15 

 

Table 6   Comparison of fuel cost in h/$   for 11-generator system 
 

DP  −λ iteration Ref [11] Ref [13] ESA PA 

1000 8502.30 8502.29 8502.29 8502.71 8502.30 

1250 9108.38 9108.38 9108.38 9108.78 9108.38 

1500 9733.53 9733.54 9733.54 9733.93 9733.53 

1750 10377.78 10377.77 10377.77 10379.47 10377.78 

2000 11041.09 11041.08 11041.08 11043.65 11041.09 

2250 11723.47 11723.47 11723.47 11724.10 11723.47 

2500 12424.94 12424.94 12424.94 12426.01 12424.94 
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Table 7   Comparison of emission in kgRs /  for 6-generator system 
 

DP  −λ iteration Ref [11] Ref [13] ESA PA 

500 261.63 261.63 261.63 261.39 261.63 

600 338.99 338.99 338.99 338.05 338.99 

700 434.38 434.38 434.38 434.17 434.38 

800 547.79 547.80 547.80 547.63 547.79 

900 679.24 679.24 679.24 678.58 679.24 

1000 828.71 828.72 828.72 828.14 828.71 

1100 996.22 996.22 996.22 995.62 996.22 
 

Table 8  Comparison of emission in kgRs /  for 11-generator system 
 

DP  −λ iteration Ref [11] Ref [13] ESA PA 

1000 205.20 205.20 205.20 205.18 205.20 

1250 339.87 339.87 339.87 339.63 339.87 

1500 540.54 540.54 540.54 540.60 540.54 

1750 807.23 807.22 807.22 806.09 807.23 

2000 1139.91 1139.91 1139.91 1138.62 1139.91 

2250 1538.60 1538.60 1538.60 1536.23 1538.60 

2500 2003.30 2003.30 2003.30 2002.15 2003.30 
 

 

Table 9 Normalized Execution Time in seconds 
 

Test System ESA PA 

6 Generator System 482 23.50 

11 Generator System 1030 28.45 

 

6.0 CONCLUSION 
A new strategy involving SA for solving EED problem has been 

developed with a view to lower the computational burden and 

renders it suitable for online applications. The close agreement 

of the performance of PA with the benchmark −λ iteration 

method, besides the other two formulations obtained from 

references [11] and [13] has allowed to acclaim its accuracy. 

The fact that it has been coined with a single decision variable 

facilitates it with a smaller search horizon and cool down at the 

global optimal solution vary fast. It is implicit that the new 

approach fosters the continued use of SA and will go a long way 

in serving as a useful tool in load dispatch centres.  
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