
©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 17

31

ABSTRACT
DNA Computing utilizes the properties of DNA for performing

the computations. The computations include arithmetic and

logical operations such as simplification of Boolean expression to

its simplest form. Boolean function can be built from ANDs, ORs,

and NOTs using minterm expansion. However, a practicing

computer engineer will very rarely be satisfied with a minterm

expansion, because as a rule, it requires more gates than

necessary. The laws and identities of Boolean algebra will almost

always allow us to simplify a minterm expansion. The efficiency

of a logic circuit is high when the number of logic gates used to

build it is small. However, minterm expression may be often

simplified to a simpler Boolean expression, which can be

implemented with fewer logic gates.

In this paper we introduced a new DNA computing algorithm for

reducing any Boolean expression to its simplest form by using

DNA strands. The major benefits of this method are its

extraordinary information density, vast parallelism and ease of

operation. In addition the most merit of this DNA Algorithm is its

automation characteristics, and simple coding steps.

Keywords
DNA computing, Minterms, Simplify, DNA Strands, Boolean

expression.

1. INTRODUCTION
DNA computing is new computation paradigms, which proposes

the use of molecular biology tools to solve different mathematical

problems. It is a form of computing which use DNA, biochemistry

and molecular biology, instead of the traditional silicon-based

computer technologies. DNA computing is interested in applying

computer science methods and models to understand such

biological phenomena and gain interest into early molecular

evolution and origin of biological information processing. The

primary advantage of DNA based computation is the ability to

handle millions of operations in parallel. DNA computing is

fundamentally similar to parallel computing in that it takes

advantage of the many different molecules of DNA to try many

different possibilities at once.

DNA computing has two important features, which are Watson-

Crick complimentarily and massive parallelism. Using the

features, we solve some optimization problems, which usually

need exponential time on silicon-based computers, in polynomial

steps with DNA molecules.

However, for DNA computing to be applicable on a various range

of problems for primitive operations, such as logic or arithmetic

operations. A number of procedures have been proposed for the

primitive operations with DNA molecules [1], [3], [4], [10], [11],

[12], [14].

Boolean algebra:
Boolean algebra is algebra for the manipulation of objects that can

take on only two values, typically true and false, although it can

be any pair of values. Because computers are built as collections

of switches that are either “on” or “off,” Boolean algebra is a very

natural way to represent digital information. In reality, digital

circuits use low and high voltages, but for our level of

understanding, 0 and 1 will suffice. It is common to interpret the

digital value 0 as false and the digital value 1 as true.

Boolean Expression:
A Boolean expression on the Boolean variables {x1, x2, ..., xn} is

an expression using those variables and the operations of a

Boolean algebra. Every Boolean expression defines a Boolean

function. Boolean function can be built from ANDs, ORs, and

NOTs using minterm expansion.

Simplification of Boolean algebra:
The laws and identities of Boolean algebra will almost always

allow us to simplify a minterm expression. The efficiency of a

logic circuit is high when the number of logic gates used to build

it is small. However, the sum-of-products (minterm) expression

may be often simplified to a simpler Boolean expression, which

can be implemented with fewer logic gates.

In this paper we introduced a new DNA algorithm for reducing

any Boolean expression to its simplest form by using different

combination of single strand DNAs. The rest of the paper is

organized as follows: in section 2, we introduce the mathematical

process to simplify Boolean expression, in section 3, we introduce

the DNA algorithm to simplify the Boolean expression and

Simplification of Boolean algebra through

DNA Computing

 Sanchita Paul
B.I.T Mesra,

Ranchi

 Gadadhar Sahoo
B.I.T Mesra

Ranchi

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 17

32

section 4, we will give the example that how to simplify the

Boolean Expression by using DNA computing following by

conclusion.

2. SIMPLIFICATION OF BOOLEAN

ALGEBRA

Some standardized forms are required for Boolean expression to

simplify communication of the expression.

Sum-of-products (SOP): Example:

F(A,B,C,D)= AB+BCD+AD

The minterms in this sum correspond to those combinations of the

values for which the function has a value of 1. This Boolean sum

is sometimes called a sum of products expansion or disjunctive

normal form.

We know that any Boolean function can be built from ANDs,

ORs, and NOTs using minterm expansion. However, a practicing

computer engineer will very rarely be satisfied with a minterm

expansion, because as a rule, it requires more gates than

necessary. The laws and identities of Boolean algebra will almost

always allow us to simplify a minterm expansion. For example,

the minterm expansion for a Boolean function f of three variables

might be represented as follows:

f = x'y'z' + x'y'z + x'yz' + x'yz + xyz' + xyz

This would require a circuit with maximum gates: 12 ANDs, 5

ORs and 9 NOTs.

Using the identities of Boolean algebra, this minterm expansion

can be simplified considerably:

f = x'y'z' + x'y'z + x'yz' + x'yz + xyz' + xyz

= x'y'(z' + z) + x'y(z' + z) + xy(z' + z) distributive law

= x'y' + x'y + xy complementarity & identity

= x'(y' + y) + xy distributive law

= x' + xy complementarity & identity

= x' + y redundancy

So, that big long minterm reduces down to x' + y which can be

built with 1 OR and 1NOT. Therefore, we will look at a very

simple technique that usually leads to a significant simplification

of minterms. It won't always produce the simplest form, but it's

close enough for most engineers considering the difficulty of the

alternative method.

3. A NEW DNA ALGORITHM FOR

SIMPLIFICATION BOOLEAN ALGEBRA

With the help of massive parallelism of DNA hybridization and

the complementary Watson-Crick law, the optimal simplified

expression can be found by basic molecular operations.

By means of the basic molecular operations such as merge,

separate, denature, detect, etc., are used to simplify the Boolean

expression to its simplest form.

For any given Boolean expression of ‘n’ variables in sum of

products form, first of all we will see that if all the minterms

contains ‘n’ variables or not. If not then we expand the expression

with the possible combinations of variables left out in that specific

minterm.

Algorithm:

Step 1: We choose 4n groups of oligonucleotides divided into

four groups. The oligonucleotides of the first group represented

variables . The oligonucleotides of the

second group represented variables …………….

(where, x=1 if and only if x=0); the oligonucleotides of third and

fourth group represented the complementary strands of the first

group (that is) and second group (that is

 …………….) respectively.

Step 2: We generate different 2n combination of single strands

DNA molecules for n variable where the oligonucleotides of third

and fourth group are ligated according to the 2n combinations of

‘n’ variables and placed those single stranded DNA molecules in

individual 2n test tubes.

Step 3: Now, the oligonucleotides of first and second groups are

ligated according to minterms of the given expression. And

AMPLIFY each minterms 2n times.

Step 4: Then we MERGE the oligonucleotides of Step 2 and Step

3. The best paired strands are kept and remaining unpaired and

semi-paired strands are separated from the test-tubes.

Step 5: The paired strands in each of the test-tube are denatured

and keep the oligonucleotide which represent the complementary

strands of minterms, in the test tubes and remaining strands are

separated from the test tubes.

Step 6: Two minterms can be combined if they differ in exactly

one literal. This means that their corresponding bit strings differ at

exactly one bit position (Example: if 3 literals are present in each

minterms then 000 can combined 001, 010, 100 etc.). So, the

complementary strands of minterms which we get from step 5 are

amplified n times, if one minterm can combined with n minterms,

(if they differ in exactly one literal).

Step 7: Now, we have to generate the strands with combination of

(n-1) variables and separate those strands in n different test tubes.

Because n variables are present in each minterms. (Example: like

001 minterms having 3 combinations that are 00, 01 and

01seperated in three different test tubes).

Step 8: Now we have to combined those two minterms which are

differ in exactly one bit position. (Example: like 001 minterms

having 3 combinations that are 00, 01 and 01, seperated in three

different test tubes. Now in that 3 test tube we merge the

complementary strands of 0′0′1′.

 0′

0′0′1′ 0′0′1′ 0′1′

00 01 0 1

Similarly, 001 differ 000 with exactly 1 bit position, so 000

minterms having 3 combination of 2 variables that are 00, 00 and

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 17

33

00, separated in three different test tubes and merge

complementary strands of 0′0′ 0′.

 0′

0′0′0′ 0′0′0′ 0′0′

00 00 0 0

Now we have to check that one combination is same for both the

cases and that is 00).

Step 9: We store only common terms of two minterms (For above

example, that is 00 because for both the cases common ds DNA is

00 and 0'0') and remaining portions are left out from the test

tubes.

Step 10: We will denature the ds DNA which we get in step 9 and

keep complementary part of the common terms (Example: for

above case it is 0′0′) and other are discarded from the test tubes.

Step 11: We store the result.

After getting result we will check any common terms are left

between the minterms. If yes then go to next step otherwise go to

step 18.

Step 12: Then we have to generate the strands with combination

of (n-2) variables and separate those combinations in different test

tubes.

Step 13: Now we have to combined those two minterms which

are differ in exactly one bit position same as step 8.

Step 14: We store only common terms of two minterms and

remaining portions are left out from the test tubes.

Step 15: We will denature the ds DNA and keep complementary

part of the common terms in one test tube.

Step 16: We store the result and check that any common terms are

left between the minterms which we get from step 15.

Step 17: If yes, then we have to generate the strands with

combination of (n-3) variables and go to step 7. Process will

continue until no common terms are left.

Step 18: End.

4. Example
For a given three variable expression:

Here each minterms having equal number of variables. So there is

no need of expansion.

Step 1: We choose 12 oligonucleotides which are divided into 4

groups. The oligonucleotides of the first group represents

variables A, B, C; the oligonucleotides of the second group

represents A, B, C; and the third and fourth group represent the

complementary strands of first and second group respectively (

Denoted as, A′, B′, C′ and A′, B′, C′).

Step 2: We generate 23 combinations of single strands DNA

molecules for 3 variables. Where the oligonucleotides of third and

fourth group are ligated according to the combinations of ‘3’

variables and placed in individual test tubes.

Figure 1. 23 combination of ss DNA molecules are placed

different test tubes

Step 3: Now, the oligonucleotides of first and second group are

ligated according to minterms of the given expression. AMPLIFY

8 times for each minterms. Resulting DNA strands for minterms

are as follows:

Figure 2. ss DNA molecules representing minterms of a given

Boolean Expression

Step 4: We MERGE the 8 sets of oligonucleotides which

represent the minterms of Step 3 and with individual

combinations which are already kept in 8 individual test tubes of

Step 2. The best paired strands are kept and remaining unpaired

and semi-paired strands are discarded from the test-tube.

Figure 3. Merge each minterms with different combinations of

oligonucleotides

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 17

34

Figure 4. Unpaired and semi-paired strands are discarded

Step 5: The paired strands are denatured and the oligonucleotides

which represent the complementary strands of each minterm are

kept in the test tubes. Remaining strands are separated from the

test tubes.

Figure 5. The paired strands are denatured and the

complementary strands of each minterm are kept in test tubes

Step 6: Two minterms can be combined if they differ in exactly

one literal. This means that their corresponding bit strings differ at

exactly one bit position. For the above example, we can compare

T0 - T1 and T0-T2, T1 - T3 , T2 - T3 and T2 – T6 and finally T3 - T7

and T6 - T7 because in those test tubes the strands having bit string

difference is exactly by 1 bit position.

The complementary strands of minterms which we get from step 5

are amplified.

AMPLIFY (T0, T0′, T0′′, T00, T00′, T00′′ , T000, T000′, T000′′)

AMPL1IFY (T1, T1′, T1′′, T10, T10′, T10′′, T100, T100′, T100′′)

AMPLIFY (T2, T2′, T2′′, T20, T20′, T20′′, T200, T200′, T200′′)

AMPLIFY (T3, T3′, T3′′, T30, T30′, T30′′, T300, T300′, T300′′)

AMPLIFY (T6, T6′, T6′′, T60, T60′, T60′′, T600, T600′, T600′′)

AMPLIFY (T7, T7′, T7′′, T70, T70′, T70′′, T700, T700′, T700′′)

Figure6: Combined two minterms if they differ in exactly one

literal

Step 7: Now, generate the strands with combination of 2

variables and separate those strands in three different test tubes

and amplify those test tubes according to the minterms. For test

tubes T0, T0′ and T0′′ where, A=0, B=0, C=0, from that, we will

take the combination of two variables and those are AB, BC, AC

and put it into 1 test tube.

Figure7: Combination of 2 variables

SEPARATE (T8, T80, T800)

AMPLIFY (T8, T80, T800, T8′, T80′, T800′, T8′′, T80′′, T800′′) [T8: AB,

T80: BC, T800: AC]

SEPARATE (T9, T90, T900)

AMPLIFY (T9, T90, T900, T9′, T90′, T900′, T9′′, T90′′, T900′′) [T9: B C,

T90: AB, T900: AC]

SEPARATE (T10, T100, T1000)

AMPLIFY (T10, T100, T1000, T10′, T100′, T1000′, T10′′, T100′′, T1000′′)

SEPARATE (T11, T110, T1100)

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 17

35

AMPLIFY (T11, T110, T1100, T11′, T110′, T1100′, T11′′, T110′′, T1100′′)

SEPARATE (T12, T120, T1200)

AMPLIFY (T12, T120, T1200, T12′, T120′, T1200′, T12′′, T120′′, T1200′′)

SEPARATE (T13, T130, T1300)

AMPLIFY (T13, T130, T1300, T3′, T130′, T1300′, T13′′, T130′′, T1300′′)

Step 8: Now, we have to combine those two minterms which are

differ in exactly one bit position.

Compare T0 - T1

MERGE [T0-T8, T00-T80, T000-T800 (For T0 test tube)

 MERGE [T1-T9, T10-T90, T100-T900 (For T1 test tube)]

Figure8: Compare T0 - T1 and get result AB

Compare T0 and T1 test tubes, both the cases AB is common.

Compare T0′ and T2:

MERRGE [T0′-T8′, T00′-T80′, T000′-T800′ (For T0′ test tube)]
MERGE [T2-T10, T20-T100, T200-T1000 (For T2 test tube)]

 Compare T0′ and T2 test tubes, both the cases AC is common.

Compare T1′ and T3:

MERRGE [T1′-T9′, T10′-T90′, T100′-T900′ (For T1′ test tube)]
MERGE [T3-T11, T30-T110, T300-T1100 (For T3 test tube)

 Compare T0′ and T2 test tubes, both the cases AC is common.

Compare T2′ and T3′:

MERRGE [T2′-T10′, T20′-T100′, T200′-T1000′ (For T2′ test tube)]
MERGE [T3′-T11′, T30′-T110′, T300′-T1100′ (For T3′ test tube)]

 Compare T2′ and T3′ test tubes, both the cases AB is common.

Compare T2′′ and T6′:

MERRGE [T2′′-T10′′, T20′′-T100′′, T200′′-T1000′′ (For T2′′ test tube)]
MERGE [T6′-T12′, T60′-T120′, T600′-T1200′ (For T6′ test tube)]

 Compare T2′′ and T6′ test tubes, both the cases BC is common.

Compare T3′′ and T7:

MERRGE [T3′′-T11′′, T30′′-T110′′, T300′′-T1100′′ (For T3′′ test tube)]
MERGE [T7-T13, T70-T130, T700-T1300 (For T7 test tube)]

 Compare T3′′ and T7 test tubes, both the cases BC is common.

Compare T6′′ and T7′:

MERRGE [T6′′-T12′′, T60′′-T120′′, T600′′-T1200′′ (For T6′′ test tube)]
MERGE [T7′-T13′, T70′-T130′, T700′-T1300′ (For T7′ test tube)]

 Compare T3′′ and T7 test tubes, both the cases AB is common.

Step 9: We store only common terms of two minterms others are

separated from the test tubes. In common terms, we store only ds

DNA part and remaining portions are left out by cutting through

restriction enzymes.

Step 10: We will denature the ds DNA and keep complementary

part of the common terms in a test tubes.

And the common terms are A′B′+B′C′+B′C′+A′C′+A′C′+A′B′+A′B′

Step 11: We store the result and check if any common terms are

left between the minterms, which we get from step 10. If yes then

go to next step otherwise go to step 18.

After denaturation, we get those minterms terms having common

terms, so again the same process will be continued. Store the

minterms in different test tubes.

Figure9: Minterms that consist some common terms after first

iteration

Step 12: Then, we generate the strands with combination of 1

variable and separate those combinations in different test tubes.

Figure10: Combination of 1 variable

Step 13: We have to combine those two minterms which are

differ in exactly one bit position. For the above example, we can

compare, T0 - T1, T0-T1′, T0-T1′′ and T0′ - T 1, T0′- T1′ and T1′- T2′ ,
T1′′- T2, T1 – T2.

The complementary strands of minterms which we get from step

10 are amplified.

AMPLIFY (T0, T01, T02, T03, T04, T05, T06, T07, T08.)

AMPLIFY (T0 ′, T01 ′, T02 ′, T03 ′, T04 ′, T05 ′, T06 ′, T07 ′, T08 ′)

AMPLIFY (T1, T11, T12, T13, T14, T15, T16, T17, T18)

AMPLIFY (T1 ′, T11 ′, T12 ′, T13 ′, T14 ′, T15 ′, T16 ′, T17 ′, T18 ′)

AMPLIFY (T1 ′′, T11 ′′, T12 ′′, T13 ′′, T14 ′′., T15 ′′, T16 ′′, T17 ′′, T18 ′′)

AMPLIFY (T2, T21, T22, T23, T24, T25, T26, T27, T28)

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 17

36

AMPLIFY (T2 ′, T22 ′, T23 ′, T24 ′, T25 ′, T26, ′ T27, T28 ′)

Step 14: Now, we have to generate the strands with combination

of 1 variable and separate those strands in 2 different test tubes

and amplify those test tubes according to the minterms.

SEPARATE (T3, T30)

AMPLIFY (T3, T30, T3′, T30′, T3′′, T30′′)

SEPARATE (T4, T40)

AMPLIFY (T4, T40, T4′, T40′, T4′′, T40′′)

SEPARATE (T5, T50)

AMPLIFY (T5, T50, T5′, T50′, T5′′, T50′′)

SEPARATE (T6, T60)

AMPLIFY (T6, T60, T6′, T60′, T6′′, T60′′)

SEPARATE (T7, T70)

AMPLIFY (T7, T70, T7′, T70′, T7′′, T70′′)

SEPARATE (T8, T80)

AMPLIFY (T8, T80, T8′, T80′, T8′′, T80′′)

SEPARATE (T9, T90)

AMPLIFY (T9, T90, T9′, T90′, T9′′, T90′′)

Now, those two minterms which differ in exactly one bit position

are combined.

Compare T0 and T1:

MERRGE [T0-T3, T01-T30]
MERGE [T1-T5, T11-T50]

Compare T0 and T1 test tubes, both the cases A is common

Compare T0 and T1′:

MERRGE [T02-T3′, T03-T30′]
MERGE [T1′-T6, T11′-T60]

Compare T0 and T1′ test tubes, both the cases A is common

Compare T0′ - T 1:

MERRGE [T0′-T4, T01′-T40]
MERGE [T 12- T5′, T13- T50′]

Compare T0′ and T1 test tubes, both the cases A is common

Compare T0′ - T 1′:

 MERRGE [T02′-T4′, T03′-T40′]
MERGE [T 12′- T6, T13′- T60]

Compare T0′ and T1′ test tubes, both the cases A is common

Compare T1′′ - T 2:

MERRGE [T1′′-T7, T11′′-T70]
MERGE [T 2- T8, T21- T80]

Compare T1′′and T2 test tubes, both the cases B is common

Compare T0- T 1′′:

MERRGE [T04-T3′′, T05- T30′′]
MERGE [T12′′- T7′, T13′′- T70′]

Compare T1′′and T0 test tubes, both the cases C is common

Compare T2′- T 1′:

MERRGE [T14′-T6′, T15′- T60′]
MERGE [T2′- T9, T21′- T90]

Compare T2′and T1′ test tubes, both the cases is B common

Compare T1- T 2:

MERRGE [T15-T5′′, T15- T50′′]
MERGE [T22- T8, T23- T80]

Compare T1 and T2 test tubes, both the cases C is common

Result is: A+ A + A + A +B+B +C+ C

After denaturation, we get those minterms terms having common

terms, so again the same process will be continued. Store the

minterms in different test tubes and repeat the steps as above. The

final result will be A+B

5. CONCLUSION
The purpose of this chapter was to show a mathematical

application of DNA computing. Hence, we consider DNA as

Arithmetic-Logic Unit, where human operators implement bio-

chemistry procedures to perform mathematical operations. The

power of the DNA Computing consists in the capability to

represent, and compute, huge binary numbers, or highly small

ones which are impossible to consider in a conventional

computer. In other words, we are able to calculate mathematical

operations with unlimited decimal digits. It is worthy noticing that

“unlimited” does not mean “endless”, but unfixed number of bits.

If we consider that 50g of DNA contains 1033 molecules, it is

clear that in few grams of DNA we can encode a great deal of

molecular bits. In this paper we introduced a new DNA

computing algorithm for reducing any Boolean expression to its

simplest form by using DNA strands. This feature is a beautiful

remedy for computational problems, which all depend on the

fixed number of bits reserved to the representation in

conventional computing.

6. REFERENCES
[1] Fukagaw. H., Fujiwara. A., Procedures for multiplication and

division in DNA computing, 2004.

[2] Adleman L. M., Computing with DNA. Scientific American,

279(2):54–61, 1998.

[3] Gupta. V., Parthasarathy. S., and Zaki. M. J., Arithmetic and

logic operations with DNA. In Proceedings 3rd DIMACS

Workshop on DNA Based Computers, pages 212–220, 1997.

[4] Hug. H., and Schuler. R., DNA-based parallel computation

of simple arithmetic. In Proceedings of International Meeting

on DNA Based Computers, pages 159–166, 2001.

[5] Liption. R. J., DNA solution of hard computational

problems. Science, 268:542–545, 1995.

[6] Qiu. Z. F., and Lu. M., Arithmetic and logic operations for

DNA computers. In Proceedings of the Second IASTED

International conference on Parallel and Distributed

Computing and Networks, pages 481–486, 1998.

[7] Qiu. Z. F., and Lu. M., Take advantage of the computing

power of DNA computers. In Proceedings of the Third

Workshop on Bio-Inspired Solutions to Parallel Processing

Problems, IPDPS 2000 Workshops, pages 570–577, 2000.

[8] Reif. J. H., Parallel bimolecular computation: Models and

simulations. Algorithmica, 25(2/3): 142–175, 1999.

[9] Merrifield. R. B., Solid phase peptide synthesis. I. The

synthesis of a tetra peptide. Journal of the American

Chemical Society, 85:2149–2154, 1963.

[10] Frisco. P., Parallel arithmetic with splicing. Romanian

Journal of Information Science and Technology, 2(3):113–

128, 2000.

[11] Fujiwara. A., Matsumoto. K., and Chen. W., Addressable

Procedures for logic and arithmetic operations with DNA

molecules. International Journal of Foundations of Computer

Science, 15(3):461–474, 2004.

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 17

37

[12] Guarnieri, F., Fliss. M., and Bancroft. C., Making DNA add.

Science, 273:220–223, 1996.

[13] Pˇaun. G., Rozeberg. G., and Salomaa. A., DNA

computing. Springer-Verlag, 1998.

[14] Kamio. S., Takehara A., and Fujiwara. A., Procedures for

computing the maximum with dna strands. In Proceedings of

the 2003 International Conference on Parallel and

Distributed Processing Techniques and Applications, volume

1, pages 351–357, 2003.

