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ABSTRACT 
DNA Computing utilizes the properties of DNA for performing 

the computations. The computations include arithmetic and 

logical operations such as simplification of Boolean expression to 

its simplest form. Boolean function can be built from ANDs, ORs, 

and NOTs using minterm expansion. However, a practicing 

computer engineer will very rarely be satisfied with a minterm 

expansion, because as a rule, it requires more gates than 

necessary. The laws and identities of Boolean algebra will almost 

always allow us to simplify a minterm expansion. The efficiency 

of a logic circuit is high when the number of logic gates used to 

build it is small. However, minterm expression may be often 

simplified to a simpler Boolean expression, which can be 

implemented with fewer logic gates.  

In this paper we introduced a new DNA computing algorithm for 

reducing any Boolean expression to its simplest form by using 

DNA strands. The major benefits of this method are its 

extraordinary information density, vast parallelism and ease of 

operation. In addition the most merit of this DNA Algorithm is its 

automation characteristics, and simple coding steps. 

Keywords 
DNA computing, Minterms, Simplify, DNA Strands, Boolean 

expression. 

1. INTRODUCTION 
DNA computing is new computation paradigms, which proposes 

the use of molecular biology tools to solve different mathematical 

problems. It is a form of computing which use DNA, biochemistry 

and molecular biology, instead of the traditional silicon-based 

computer technologies. DNA computing is interested in applying 

computer science methods and models to understand such 

biological phenomena and gain interest into early molecular 

evolution and origin of biological information processing. The 

primary advantage of DNA based computation is the ability to 

handle millions of operations in parallel. DNA computing is 

fundamentally similar to parallel computing in that it takes 

advantage of the many different molecules of DNA to try many 

different possibilities at once. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DNA computing has two important features, which are Watson-

Crick complimentarily and massive parallelism. Using the 

features, we solve some optimization problems, which usually 

need exponential time on silicon-based computers, in polynomial 

steps with DNA molecules.  

 

However, for DNA computing to be applicable on a various range 

of problems for primitive operations, such as logic or arithmetic 

operations. A number of procedures have been proposed for the 

primitive operations with DNA molecules [1], [3], [4], [10], [11], 

[12], [14]. 

 

Boolean algebra: 
Boolean algebra is algebra for the manipulation of objects that can 

take on only two values, typically true and false, although it can 

be any pair of values. Because computers are built as collections 

of switches that are either “on” or “off,” Boolean algebra is a very 

natural way to represent digital information. In reality, digital 

circuits use low and high voltages, but for our level of 

understanding, 0 and 1 will suffice. It is common to interpret the 

digital value 0 as false and the digital value 1 as true.  

 

Boolean Expression:  
A Boolean expression on the Boolean variables {x1, x2, ..., xn} is 

an expression using those variables and the operations of a 

Boolean algebra. Every Boolean expression defines a Boolean 

function. Boolean function can be built from ANDs, ORs, and 

NOTs using minterm expansion.  

 

Simplification of Boolean algebra: 
The laws and identities of Boolean algebra will almost always 

allow us to simplify a minterm expression. The efficiency of a 

logic circuit is high when the number of logic gates used to build 

it is small. However, the sum-of-products (minterm) expression 

may be often simplified to a simpler Boolean expression, which 

can be implemented with fewer logic gates.  

 

In this paper we introduced a new DNA algorithm for reducing 

any Boolean expression to its simplest form by using different 

combination of single strand DNAs. The rest of the paper is 

organized as follows: in section 2, we introduce the mathematical 

process to simplify Boolean expression, in section 3, we introduce 

the DNA algorithm to simplify the Boolean expression and 
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section 4, we will give the example that how to simplify the 

Boolean Expression by using DNA computing following by 

conclusion. 

 

2. SIMPLIFICATION OF BOOLEAN 

ALGEBRA 
 

Some standardized forms are required for Boolean expression to 

simplify communication of the expression. 

Sum-of-products (SOP): Example:  

F(A,B,C,D)= AB+BCD+AD 

The minterms in this sum correspond to those combinations of the 

values for which the function has a value of 1. This Boolean sum 

is sometimes called a sum of products expansion or disjunctive 

normal form.  

We know that any Boolean function can be built from ANDs, 

ORs, and NOTs using minterm expansion. However, a practicing 

computer engineer will very rarely be satisfied with a minterm 

expansion, because as a rule, it requires more gates than 

necessary. The laws and identities of Boolean algebra will almost 

always allow us to simplify a minterm expansion. For example, 

the minterm expansion for a Boolean function f of three variables 

might be represented as follows:  

 

f = x'y'z' + x'y'z + x'yz' + x'yz + xyz' + xyz 

 

This would require a circuit with maximum gates: 12 ANDs, 5 

ORs and 9 NOTs.  

Using the identities of Boolean algebra, this minterm expansion 

can be simplified considerably: 

 

f = x'y'z' + x'y'z + x'yz' + x'yz + xyz' + xyz 

= x'y'(z' + z) + x'y(z' + z) + xy(z' + z) distributive law 

= x'y' + x'y + xy complementarity & identity 

= x'(y' + y) + xy distributive law 

= x' + xy complementarity & identity 

= x' + y redundancy 

 

So, that big long minterm reduces down to x' + y which can be 

built with 1 OR and 1NOT. Therefore, we will look at a very 

simple technique that usually leads to a significant simplification 

of minterms. It won't always produce the simplest form, but it's 

close enough for most engineers considering the difficulty of the 

alternative method.  

 

3. A NEW DNA ALGORITHM FOR 

SIMPLIFICATION BOOLEAN ALGEBRA 
 

With the help of massive parallelism of DNA hybridization and 

the complementary Watson-Crick law, the optimal simplified 

expression can be found by basic molecular operations. 

By means of the basic molecular operations such as merge, 

separate, denature, detect, etc., are used to simplify the Boolean 

expression to its simplest form. 

For any given Boolean expression of ‘n’ variables in sum of 

products form, first of all we  will see that if all the minterms 

contains ‘n’ variables or not. If not then we expand the expression 

with the possible combinations of variables left out in that specific 

minterm.  

Algorithm: 
 

Step 1: We choose 4n groups of oligonucleotides divided into 

four groups. The oligonucleotides of the first group represented 

variables  . The oligonucleotides of the 

second group represented variables   …………….   

(where, x=1 if and only if x=0); the oligonucleotides of third and 

fourth group represented the complementary strands of the first 

group (that is    ) and second group (that is 

 ……………. ) respectively. 

 

Step 2: We generate different 2n combination of single strands 

DNA molecules for n variable where the oligonucleotides of third 

and fourth group are ligated according to the 2n combinations of 

‘n’ variables and placed those single stranded DNA molecules in 

individual 2n test tubes.  

 

Step 3: Now, the oligonucleotides of first and second groups are 

ligated according to minterms of the given expression. And 

AMPLIFY each minterms 2n times. 

 

Step 4: Then we MERGE the oligonucleotides of Step 2 and Step 

3. The best paired strands are kept and remaining unpaired and 

semi-paired strands are separated from the test-tubes. 

Step 5: The paired strands in each of the test-tube are denatured 

and keep the oligonucleotide which represent the complementary 

strands of minterms, in the test tubes and remaining strands are 

separated from the test tubes. 

Step 6: Two minterms can be combined if they differ in exactly 

one literal. This means that their corresponding bit strings differ at 

exactly one bit position (Example: if 3 literals are present in each 

minterms then 000 can combined 001, 010, 100 etc.). So, the 

complementary strands of minterms which we get from step 5 are 

amplified n times, if one minterm can combined with n minterms, 

(if they differ in exactly one literal). 

 

Step 7: Now, we have to generate the strands with combination of 

(n-1) variables and separate those strands in n different test tubes. 

Because n variables are present in each minterms. (Example: like 

001 minterms having 3 combinations that are 00, 01 and 

01seperated in three different test tubes). 

Step 8: Now we have to combined those two minterms which are 

differ in exactly one bit position. (Example: like 001 minterms 

having 3 combinations that are 00, 01 and 01, seperated in three 

different test tubes. Now in that 3 test tube we merge the 

complementary strands of 0′0′1′.  

                                0′ 

0′0′1′     0′0′1′         0′1′ 

00             01          0 1  

Similarly, 001 differ 000 with exactly 1 bit position, so 000 

minterms having 3 combination of 2 variables  that are 00, 00 and 
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00,  separated in three different test tubes and merge 

complementary strands of 0′0′ 0′.      

                               0′ 

0′0′0′     0′0′0′         0′0′ 

00             00          0 0  

Now we have to check that one combination is same for both the 

cases and that is 00). 

Step 9: We store only common terms of two minterms (For above 

example, that is 00 because for both the cases common ds DNA is 

00 and 0'0') and remaining portions are left out from the test 

tubes. 

Step 10: We will denature the ds DNA which we get in step 9 and 

keep complementary part of the common terms (Example: for 

above case it is 0′0′) and other are discarded from the test tubes. 

Step 11:  We store the result. 

After getting result we will check any common terms are left 

between the minterms. If yes then go to next step otherwise go to 

step 18. 

Step 12: Then we have to generate the strands with combination 

of (n-2) variables and separate those combinations in different test 

tubes. 

Step 13: Now we have to combined those two minterms which 

are differ in exactly one bit position same as step 8. 

Step 14: We store only common terms of two minterms and 

remaining portions are left out from the test tubes.  

Step 15: We will denature the ds DNA and keep complementary 

part of the common terms in one test tube. 

Step 16: We store the result and check that any common terms are 

left between the minterms which we get from step 15. 

Step 17: If yes, then we have to generate the strands with 

combination of (n-3) variables and go to step 7. Process will 

continue until no common terms are left. 

Step 18: End.  

 

 

4. Example  
For a given three variable expression:  

 

Here each minterms having equal number of variables. So there is 

no need of expansion. 

Step 1:  We choose 12 oligonucleotides which are divided into 4 

groups. The oligonucleotides of the first group represents 

variables A, B, C; the oligonucleotides of the second group 

represents A, B, C; and the third and fourth group represent the 

complementary strands  of first and second group respectively ( 

Denoted as,  A′, B′, C′ and A′, B′, C′).  

 

Step 2: We generate 23 combinations of single strands DNA 

molecules for 3 variables. Where the oligonucleotides of third and 

fourth group are ligated according to the combinations of ‘3’ 

variables and placed in individual test tubes.  

 
Figure 1.  23 combination of ss DNA molecules are placed 

different test tubes 

Step 3: Now, the oligonucleotides of first and second group are 

ligated according to minterms of the given expression. AMPLIFY 

8 times for each minterms. Resulting DNA strands for minterms 

are as follows: 

 

Figure 2. ss DNA molecules representing minterms of a given 

Boolean Expression 

 

Step 4: We MERGE the 8 sets of oligonucleotides which 

represent the minterms of Step 3 and with individual 

combinations which are already kept in 8 individual test tubes of 

Step 2. The best paired strands are kept and remaining unpaired 

and semi-paired strands are discarded from the test-tube. 

 
Figure 3. Merge each minterms with different combinations of 

oligonucleotides 
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Figure 4. Unpaired and semi-paired strands are discarded 

 

Step 5: The paired strands are denatured and the oligonucleotides 

which represent the complementary strands of each minterm are 

kept in the test tubes. Remaining strands are separated from the 

test tubes. 

 
Figure 5. The paired strands are denatured and the 

complementary strands of each minterm are kept in test tubes 

 

 

Step 6: Two minterms can be combined if they differ in exactly 

one literal. This means that their corresponding bit strings differ at 

exactly one bit position. For the above example, we can compare 

T0 - T1 and T0-T2, T1 - T3 , T2 - T3 and T2 – T6  and finally T3 - T7 

and T6 - T7 because in those test tubes the strands having bit string 

difference is exactly by 1 bit position.  

The complementary strands of minterms which we get from step 5 

are amplified.  

AMPLIFY (T0, T0′, T0′′, T00, T00′, T00′′ , T000, T000′, T000′′) 

AMPL1IFY (T1, T1′, T1′′, T10, T10′, T10′′, T100, T100′, T100′′) 

AMPLIFY (T2, T2′, T2′′, T20, T20′, T20′′, T200, T200′, T200′′) 

AMPLIFY (T3, T3′, T3′′, T30, T30′, T30′′, T300, T300′, T300′′) 

AMPLIFY (T6, T6′, T6′′, T60, T60′, T60′′, T600, T600′, T600′′) 

AMPLIFY (T7, T7′, T7′′, T70, T70′, T70′′, T700, T700′, T700′′) 

 
Figure6: Combined two minterms if they differ in exactly one 

literal 

 

Step 7:  Now, generate the strands with combination of 2 

variables and separate those strands in three different test tubes 

and amplify those test tubes according to the minterms.  For test 

tubes T0, T0′ and T0′′ where, A=0, B=0, C=0, from that, we will 

take the combination of two variables and those are AB, BC, AC 

and put it into 1 test tube.  

 

 
Figure7: Combination of 2 variables 

 

SEPARATE (T8, T80, T800)  

AMPLIFY (T8, T80, T800, T8′, T80′, T800′, T8′′, T80′′, T800′′) [T8: AB, 

T80: BC, T800: AC] 

SEPARATE (T9, T90, T900)  

AMPLIFY (T9, T90, T900, T9′, T90′, T900′, T9′′, T90′′, T900′′) [T9:   B C, 

T90: AB, T900: AC] 

SEPARATE (T10, T100, T1000) 

AMPLIFY (T10, T100, T1000, T10′, T100′, T1000′, T10′′, T100′′, T1000′′) 

SEPARATE (T11, T110, T1100) 
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AMPLIFY (T11, T110, T1100, T11′, T110′, T1100′, T11′′, T110′′, T1100′′) 

SEPARATE (T12, T120, T1200) 

AMPLIFY (T12, T120, T1200, T12′, T120′, T1200′, T12′′, T120′′, T1200′′) 

SEPARATE (T13, T130, T1300) 

AMPLIFY (T13, T130, T1300, T3′, T130′, T1300′, T13′′, T130′′, T1300′′) 

Step 8:  Now, we have to combine those two minterms which are 

differ in exactly one bit position.  

Compare T0 - T1  

MERGE [T0-T8, T00-T80, T000-T800 (For T0 test tube) 

          
    MERGE [T1-T9, T10-T90, T100-T900 (For T1 test tube)] 

 

        
Figure8:  Compare T0 - T1 and get result AB 

 

Compare T0 and T1 test tubes, both the cases AB is common. 

 

Compare T0′ and T2:  

MERRGE [T0′-T8′, T00′-T80′, T000′-T800′ (For T0′ test tube)]           
MERGE [T2-T10, T20-T100, T200-T1000 (For T2 test tube) ]                

  Compare T0′ and T2 test tubes, both the cases AC is common. 

Compare T1′ and T3:  

MERRGE [T1′-T9′, T10′-T90′, T100′-T900′ (For T1′ test tube)]           
MERGE [T3-T11, T30-T110, T300-T1100 (For T3 test tube)                 

  Compare T0′ and T2 test tubes, both the cases AC is common. 

Compare T2′ and T3′:  

MERRGE [T2′-T10′, T20′-T100′, T200′-T1000′ (For T2′ test tube)]           
MERGE [T3′-T11′, T30′-T110′, T300′-T1100′ (For T3′ test tube) ]             

  Compare T2′ and T3′ test tubes, both the cases AB is common. 

Compare T2′′ and T6′:  

MERRGE [T2′′-T10′′, T20′′-T100′′, T200′′-T1000′′ (For T2′′ test tube)]           
MERGE [T6′-T12′, T60′-T120′, T600′-T1200′ (For T6′ test tube)  ]             

  Compare T2′′ and T6′ test tubes, both the cases BC is common. 

Compare T3′′ and T7:  

MERRGE [T3′′-T11′′, T30′′-T110′′, T300′′-T1100′′ (For T3′′ test tube)]           
MERGE [T7-T13, T70-T130, T700-T1300 (For T7 test tube)  ]             

  Compare T3′′ and T7 test tubes, both the cases BC is common. 

Compare T6′′ and T7′:  

MERRGE [T6′′-T12′′, T60′′-T120′′, T600′′-T1200′′ (For T6′′ test tube)]           
MERGE [T7′-T13′, T70′-T130′, T700′-T1300′ (For T7′ test tube)]             

  Compare T3′′ and T7 test tubes, both the cases AB is common. 

 

Step 9: We store only common terms of two minterms others are 

separated from the test tubes. In common terms, we store only ds 

DNA part and remaining portions are left out by cutting through 

restriction enzymes. 

Step 10: We will denature the ds DNA and keep complementary 

part of the common terms in a test tubes. 

And the common terms are A′B′+B′C′+B′C′+A′C′+A′C′+A′B′+A′B′ 

Step 11: We store the result and check if any common terms are 

left between the minterms, which we get from step 10. If yes then 

go to next step otherwise go to step 18.   

 

After denaturation, we get those minterms terms having common 

terms, so again the same process will be continued. Store the 

minterms in different test tubes. 

 
Figure9: Minterms that consist some common terms after first 

iteration 

 

Step 12:  Then, we generate the strands with combination of 1 

variable and separate those combinations in different test tubes. 

 
Figure10: Combination of 1 variable 

 

Step 13:  We have to combine those two minterms which are 

differ in exactly one bit position. For the above example, we can 

compare, T0 - T1, T0-T1′, T0-T1′′ and T0′ - T 1,  T0′- T1′ and  T1′- T2′  ,  
T1′′- T2, T1 – T2. 

The complementary strands of minterms which we get from step 

10 are amplified.  

 

AMPLIFY (T0, T01, T02, T03, T04, T05, T06, T07, T08.)  

AMPLIFY (T0 ′, T01 ′, T02 ′, T03 ′, T04 ′, T05 ′, T06 ′, T07 ′, T08 ′) 

AMPLIFY (T1, T11, T12, T13, T14, T15, T16, T17, T18 ) 

AMPLIFY (T1 ′, T11 ′, T12 ′, T13 ′, T14 ′, T15 ′, T16 ′, T17 ′, T18 ′) 

AMPLIFY (T1 ′′, T11 ′′, T12 ′′, T13 ′′, T14 ′′., T15 ′′, T16 ′′, T17 ′′, T18 ′′) 

AMPLIFY (T2, T21, T22, T23, T24, T25, T26, T27, T28) 
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AMPLIFY (T2 ′, T22 ′, T23 ′, T24 ′, T25 ′, T26, ′ T27, T28 ′) 

Step 14: Now, we have to generate the strands with combination 

of 1 variable and separate those strands in 2 different test tubes 

and amplify those test tubes according to the minterms.  

SEPARATE (T3, T30)  

AMPLIFY (T3, T30, T3′, T30′, T3′′, T30′′) 

SEPARATE (T4, T40)  

AMPLIFY (T4, T40, T4′, T40′, T4′′, T40′′) 

SEPARATE (T5, T50)  

AMPLIFY (T5, T50, T5′, T50′, T5′′, T50′′) 

SEPARATE (T6, T60)  

AMPLIFY (T6, T60, T6′, T60′, T6′′, T60′′) 

SEPARATE (T7, T70)  

AMPLIFY (T7, T70, T7′, T70′, T7′′, T70′′) 

SEPARATE (T8, T80)  

AMPLIFY (T8, T80, T8′, T80′, T8′′, T80′′) 

SEPARATE (T9, T90)  

AMPLIFY (T9, T90, T9′, T90′, T9′′, T90′′) 

Now, those two minterms which differ in exactly one bit position 

are combined.  

Compare T0 and T1:  

MERRGE [T0-T3, T01-T30]           
MERGE [T1-T5, T11-T50]        

Compare T0 and T1 test tubes, both the cases A is common   

Compare T0 and T1′:  

MERRGE [T02-T3′, T03-T30′]           
MERGE [T1′-T6, T11′-T60]        

Compare T0 and T1′ test tubes, both the cases A is common   

Compare T0′ - T 1:  

MERRGE [T0′-T4, T01′-T40]           
MERGE [T 12- T5′, T13- T50′]        

Compare T0′ and T1 test tubes, both the cases A is common   

Compare T0′ - T 1′:  

 MERRGE [T02′-T4′, T03′-T40′]           
MERGE [T 12′- T6, T13′- T60]        

Compare T0′ and T1′ test tubes, both the cases A is common   

Compare T1′′ - T 2:  

MERRGE [T1′′-T7, T11′′-T70]           
MERGE [T 2- T8, T21- T80]        

Compare T1′′and T2 test tubes, both the cases B is common   

Compare T0- T 1′′:  

MERRGE [T04-T3′′, T05- T30′′]           
MERGE [T12′′- T7′, T13′′- T70′]        

Compare T1′′and T0  test tubes, both the cases C is common   

Compare T2′- T 1′:  

MERRGE [T14′-T6′, T15′- T60′]           
MERGE [T2′- T9, T21′- T90]        

Compare T2′and T1′  test tubes, both the cases is  B common   

Compare T1- T 2:  

MERRGE [T15-T5′′, T15- T50′′]           
MERGE [T22- T8, T23- T80]        

Compare T1 and T2 test tubes, both the cases C is common   

Result is: A+ A + A + A +B+B +C+ C 

After denaturation, we get those minterms terms having common 

terms, so again the same process will be continued. Store the 

minterms in different test tubes and repeat the steps as above. The 

final result will be A+B 

 

5. CONCLUSION 
The purpose of this chapter was to show a mathematical 

application of DNA computing. Hence, we consider DNA as 

Arithmetic-Logic Unit, where human operators implement bio-

chemistry procedures to perform mathematical operations. The 

power of the DNA Computing consists in the capability to 

represent, and compute, huge binary numbers, or highly small 

ones which are impossible to consider in a conventional 

computer. In other words, we are able to calculate mathematical 

operations with unlimited decimal digits. It is worthy noticing that 

“unlimited” does not mean “endless”, but unfixed number of bits. 

If we consider that 50g of DNA contains 1033 molecules, it is 

clear that in few grams of DNA we can encode a great deal of 

molecular bits. In this paper we introduced a new DNA 

computing algorithm for reducing any Boolean expression to its 

simplest form by using DNA strands. This feature is a beautiful 

remedy for computational problems, which all depend on the 

fixed number of bits reserved to the representation in 

conventional computing. 
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