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ABSTRACT 

This paper presents a novel and efficient method to estimate 

the equivalent circuit parameters of three-phase induction 

motor from its manufacturer data for steady state analysis using 

improved particle swarm optimization (IPSO). The IPSO 

integrates the particle swarm optimization (PSO) with the 

chaotic sequences. The optimization problem is based on 

minimizing the error between the computed performance of the 

equivalent circuit and the manufacturer data. The application of 

chaotic sequences in PSO is an efficient strategy to improve the 

global searching capability and escape from local minima. The 

feasibility of the proposed method is demonstrated for two test 

motors, and the test results are compared with the simple PSO 

and classical parameter estimation methods. The simulation 

results show that the proposed method is capable of obtaining 

higher quality solutions. 

General Terms 

Algorithms, Performance, Experimentation,Verification. 

Keywords 
Chaotic sequences, Improved Particle Swarm Optimization, 

Induction Motor, Parameter Estimation, Particle Swarm 

Optimization. 

1. INTRODUCTION 
Induction machines are extensively applied in all sectors due to 

their low price and ruggedness. The presence or absence of a 

large induction machine or a combination of machines in power 

systems plays a significant role in transient stability or security 

assessment. Accurate machine parameters are essential for 

systems behavior prediction. Machine parameters are also 

crucial in industrial system studies. These parameters are 

generally determined via the classical no-load and locked rotor 

tests [1]. However these approaches cannot be implemented 

easily. Besides, the locked-rotor test requires that the shaft of 

the motor be locked. Classical approach with linear square has 

been implemented to identify machine parameters [2], [3]. The 

linear parameter estimation techniques have been used to 

determine the rotor resistance, rotor self-inductance and the 

stator leakage inductance of a three phase induction machine. 

The problem has also been solved with more sophisticated 

approach for non linear system identification [4].   In [5], a very 

complete survey on various approaches to machine parameter 

estimation has been presented. 

 

A very simple method for determining squirrel cage induction 

motor parameters and problems in the determination of 

parameters with two methods proposed in IEEE standard 112 

was discussed [6]. Equivalent circuit parameters were 

calculated from data of three tests: no-load, locked rotor and 

over load test. The method had the advantage of not requiring 

torque measurements. The mathematical method for estimating 

the equivalent circuit parameters of induction machines from 

the most available performance characteristics was presented 

[7] [8]. These methods utilizes machine equations to estimate 

the parameters and then performs sensitivity analysis with 

respect to the circuit parameters to match the given 

performance characteristics. A new parameter estimation 

method for induction motors has been presented [9]. In this 

method, the double cage induction motor was modeled from 

manufacturer data such as name plate data and motor 

performance characteristics.  

The evolutionary algorithm [10], genetic algorithm [11] – [15], 

adaptive GA [16], artificial neural network (ANN) [17] [18] 

and differential evolution [19] have been used for parameter 

determination of induction motor.  

A particle swarm optimization (PSO) is suggested by Eberhart 

and Kennedy based on the analogy of swarm of bird and school 

of fish [20]. The PSO mimics the behavior of individuals in a 

swarm to maximize the survival of the species. The main 

advantages of the PSO algorithm are summarized as; simple 

concept, easy implementation, robustness to control parameters, 

and computational efficiency when compared with the other 

heuristic optimization techniques [21]. Chaos, apparently 

disordered behaviors that is nonetheless deterministic, is a 

universal phenomenon that occurs in many systems in all areas 

of science [22]. Recently, chaotic sequences have been adopted 

instead of random ones and have shown very promising results 

in many engineering applications [23]. 

In this paper, a novel approach for solving the parameter 

estimation problems using an improved particle swarm 

optimization (IPSO) has been proposed. The application of 

chaotic sequences in PSO is a useful strategy to improve the 

global searching capability and prevent the premature 

convergence to local minima. The proposed IPSO is applied to 

estimate the equivalent circuit parameters of two sample 

motors in order to demonstrate the performance of the proposed 

algorithm. 
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2.    FORMULATION OF PARAMETER  

        DETERMINATION  
Parameter determination of three-phase induction motors is 

formulated as an optimization problem. The inputs required for 

this method are the nameplate data, torque-slip, current-slip 

and power factor-slip characteristics. The objective is to find a 

equivalent circuit parameter set which yields a computed 

performance of the motor with minimal normalized square error 

when compared to the manufacturer data. It can be formulated 

mathematically with an objective function and three 

constraints. 

 
Tn

1i
Tn

)i(S
2

ΔTpfn

1i
pfn

)i(S
2

ΔpfIn

1i
In

)i(S
2

ΔI
F(x)               (1) 

Where,       ]2R,2X,mX,1X,1[RX  

          
)i(Sm.fI

)i(Sm.fI)i(S1I
)iΔI(S        i = 1…..nI          

         
)i(Sm.fpf

)i(Sm.fpf)ipf(S
)iΔpf(S    i = 1…...npf  

          
)i(Sm.fT

)i(Sm.fT)iT(S
)iΔT(S      i = 1… nT  

m.f  Manufacturer data 

Si discrete values for the induction motor slip 

nI, npf, nT  number of data points  available for current, power-  

                 factor and torque respectively.  

2.1  Minimum and Maximum Parameter  

          Limits 
Each parameter should be laid between minimum and 

maximum limits. The corresponding inequality constraints for 

each machine parameter are 

maxi,XiXmini,X  

 

Where X i, min and X i, max, are the minimum and 

maximum value of parameter i, respectively. 

2.2    Efficiency Balance Equation 
For efficiency balance, an equality constraint should be 

satisfied. The calculated full load efficiency should be the same 

as the manufacturer full load efficiency. 
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Where PFL and Prot are the rated power and rotational 

losses respectively. 

2.3   Maximum Torque Constraint 

5%max(X)Tmax.mfT  

Where T max.m.f and T max(X) are the manufacturer and the 

estimated maximum torque respectively.  

 

3.  OPTIMIZATION METHODOLOGIES   

     FOR PARAMETER DETERMINATION    

      PROBLEMS  

3.1 Overview of the PSO 

Particle swarm optimization (PSO), first introduced by 

Kennedy and Eberhart, is one of the heuristic optimization 

algorithms. A simple PSO maintains a swarm of particles that 

represent the potential solutions to the problem on hand. The 

simple PSO consists of a swarm of particles moving in the D-

dimensional space of possible problem solutions. Each particle 

embeds the relevant information regarding the D decision 

variables and is associated with a fitness that provides an 

indication of its performance in the objective space. Each 

particle i has a position X i = [X i, 1, X i, 2 ….X i, D] and a flight 

velocity V i = [V i, 1,     V i, 2……V i, D] . Moreover, a swarm 

contains each particle i  own best position pbest i = (pbest i, 1, 

pbest i,2, ……., pbest i, D) found so far and a global best particle 

position gbest = (gbest i, gbest i, ……., gbest D) found among all 

the particles in the swarm so far. 

In essence, the trajectory of each particle is updated according 

to its own flying experience as well as to that of the best 

particle in the swarm. The standard PSO algorithm can be 

described as 

 

V i, d 
k+1 = W  V i, d 

k + C1 rand1  (pbest i, d
k
 – X i, d

k) +  

                C2 rand2 (gbest d
k – X i, d 

k)                                 (2) 

 

X i, d
k+1  =  X i,d

k + Vi, d
k+1                                                 (3)

  

i= 1, 2………, n; d= 1, 2………., D 

Where W is a weighting factor; C1 is a cognition acceleration 

factor; C2 is a social acceleration factor; rand1 and rand2 are two 

random numbers uniformly distributed between 0 and 1; Vi, d 
k 

is the velocity of particle i at iteration k; X i, d 
k  is the dth 

dimension position of particle i at iteration k; pbest i, d
k is the 

dth dimension of the own best position of particle i  until 

iteration k; gbest d
k is the dth dimension of the best particle in 

the swarm at iteration k.The time varying weighting function 

was introduced in [20] as per which W is given by 

W= W max - (W max – W min) × Iter / Iter max                               (4) 

Where W max and W min are initial and final weight 

respectively, Iter is current iteration number and Iter max is 

maximum iteration number. The model using (4) is called 

‘inertia weights approach (IWA)’. The inertia weight is 

employed to control the impact of the previous history of 

velocities on the current velocity. Thus the parameter W 

regulates the trade-off between the global and the local 

exploration abilities of the swarm. A large inertia weight 

facilitates exploration, while a small one tends to facilitate 

exploitation. 
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3.2   Improved Particle Swarm Optimization 

One of the simplest dynamic systems evidencing chaotic 

behavior is the iterator called the logistic map, whose equation 

is described as follows: 

fk=µ.fk-1.(1-fk-1)                                                                     (5) 

where µ is a control parameter and has the real value between 

[0,4]. Despite the apparent simplicity of the equation, the 

solution exhibits a rich variety of behaviors. The behavior of 

the system represented by equation (5) is greatly changed with 

the variation of µ. The value of µ determines whether ‘f’ 

stabilizes at a constant size, oscillates between a limited 

sequence of sizes, or behaves chaotically in an unpredictable 

pattern. And also the behavior of the system is sensitive to 

initial value of ‘f’ [22]. Equation (5) is deterministic, 

displaying chaotic dynamics when µ = 4.0 

and 0,0.75,1.00,0.25,0.50f . 

In this paper, the new weight is defined as multiplying equation 

(4) by equation (5) in order to improve the global searching 

capability as follows: 

Wnew = W × f                                                                  (6) 

Whereas, the conventional weight decreases monotonously 

from Wmax to Wmin, the proposed new weight decreases and 

oscillates simultaneously for total iteration as shown in    

Figure 1. 

 

Figure 1. Comparison of weights by each approach 

4. IMPLEMENTATION OF IPSO 

ALGORITHM FOR PARAMETER 

DETERMINATION PROBLEMS 

In this section, the implementation of IPSO algorithm for 

parameter determination problem is described. The proposed 

IPSO algorithm not only improves the standard PSO algorithm 

but also adds new strategy in order to find the global solution 

better than PSO algorithm by applying the chaotic sequences 

for weight parameter. The proposed algorithm can be 

summarized as follows: 

Step 1: Get the manufacturer data of the induction motor. 

Step 2: Initialize parameters Wmax, Wmin, C1, C2 and Itermax. 

Step 3: Generate intial population of N particles with random 

positions and velocities. 

Step 4: Calculate fitness: Evaluate the fitness value of current 

particle using objective function (1).  

Step 5: Update personal best: Compare the fitness value of each    

particle with its pbests. If the  current value is better than 

pbest, then set pbest value to the current value. 

Step 6: Update global best : Compare the fitness value of each  

particle with gbest. If the current value is better than 

gbest, set gbest to the current particle’s value. 

Step 7: Update chaotic weight: Calculate weight Wnew k+1 using       

equation (6). 

Step 8: Updatevelocities: Calculate velocities V k+1 using   

equation (6). 

Step 9: Update positions: Calculate positions X k+1 using 

equation (3). 

Step 10: Return to step (4) until the current iteration reaches the 

maximum iteration number. 

Step 11: Output the optimal solution in the last iteration. 

5.   RESULTS AND DISCUSSIONS  

To verify the feasibility of the proposed IPSO method, two 

sample motors were tested and the results are compared with 

the simple PSO and the classical determination methods [1]. 

Some parameters must be assigned before IPSO is used to solve 

the parameter estimation problem as follows: Population size = 

20; initial inertia weight w max =0.9; final inertia weight w min 

=0.1; acceleration factor C1 =C2 =1.5; maximum iteration 

Itermax = 50; control parameter of chaotic sequences μ = 4.0 and 

the initial value of ‘f’ is a random value between [0, 1] except 

for (0, 0.25, 0.5, 0.75, and 1).  

The nameplate data of the sample motors are given in Table 1. 

The equivalent circuit parameters obtained from the IPSO, PSO 

and classical methods are reported in Table 2 for the two test 

motors. The torque-slip and current-slip characteristics were 

obtained from the parameters available in Table 2 and shown in 

Figures 2 and 3. It should be noticed that the curves generated 

by the proposed IPSO method are closer to the manufacturer 

data than the other methods. 

Table 1.  Name plate data of the test machines 

 

Specifications Motor 1 Motor 2 

Capacity 5HP 40HP 

Voltage 400V 400V 

Current 8A 45A 

Frequency 50Hz 50Hz 

No. of Poles 4 4 

Full load slip 0.07 0.09 

Full load torque 25Nm 190Nm 

Full load efficiency 88% 90% 
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Table 2.  Summary of parameter estimation results 

 

 
                                                    (a) 

 
                                              (b) 

Figure 2. Performances curves of motor 1 obtained from 

PSO, IPSO and classical methods 

(a) Torque versus slip curve 

(b) Current versus slip curve 

 

 
                                                    (a) 

 
                                                (b) 

Figure 3. Performances curves of motor 2 obtained from 

PSO, IPSO and classical methods 

(c) Torque versus slip curve 

(d) Current versus slip curve 

 

 

Parameters Motor 1 Motor 2 

Classical PSO IPSO Classical PSO IPSO 

R1 8.0 1.88 2.34 0.015 0.022 0.025 

R2 5.27 5.9 5.77 0.44 0.454 0.45 

X1, X2 14.81 15.46 15.4 0.58 0.59 0.59 

Xm 409.6 287 309 11.57 12.27 10.9 
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Table 3. Comparison of classical, PSO and IPSO results with manufacturer data for motor 1 

 

Table 4. Comparison of classical, PSO and IPSO results with manufacturer data for motor 2 

 

Table 5. Comparison of results for 20 runs of PSO and 

IPSO methods 

 

Figure 4. Convergence characteristic for PSO and IPSO 

methods of motor 1 

 

 In order to quantify the comparison between IPSO and other 

methods, the error is computed for each characteristic of the 

test motors.  

The error (e) is computed as follows: 

         

100

mX

eXmX
) % ( e                                       (7) 

Where, Xm and Xe are manufacturer and estimated data of 

performance characteristic X.  The error in the performance 

characteristics of the two sample motors obtained from the 

various methods are given in Tables 3 and 4. It shows that, the 

IPSO method has produced lesser error than the PSO and the 

classical methods. It should be emphasized that the distinct 

achievement of the present work is to avoid the need of 

performing lab tests in order to obtain a parameter set that will 

acceptably match the performance of the induction motor over a 

relatively wide range of operating conditions. 

 

5.1 Comparison of Two Methods 

5.1.1 Solution quality 
As seen in Table 5, the IPSO method can obtain lower 

normalized square error than the PSO method, thus resulting in 

the higher quality solution. Moreover, through 20 trials, the 

IPSO method yields smaller percentage deviation of evaluation 

values than the PSO method. 

 

 

Characteristic Manufacturer 

data 

Classical PSO IPSO 

Estimated 

data 

Error (%) Estimated 

data 

Error (%) Estimated 

data 

Error (%) 

Starting torque (Nm) 15 14.25 5 16.01 -6.74 15.76 -5.06 

Starting current(A) 22 21.72 1.27 22.29 -1.33 22.27 -1.21 

Maximumtorque (Nm) 42 36.46 13.18 41.84 0.38 41.63 0.89 

Full load torque (Nm) 25 27.415 -9.66 27.635 -10.5 27.11 -8.45 

Full load current (A) 8 7.82 2.24 7.4 7.42 7.57 5.39 

Full load power factor 0.8 0.88 -10.1 0.829 -3.63 0.84 -0.05 

Full load efficiency( %) 88 83.22 5.44 90.57 -2.93 90 -2.27 

Characteristic Manufacturer 

data 

Classical PSO IPSO 

Estimated 

data 

Error (%) Estimated 

data 

Error (%) Estimated 

data 

Error (%) 

Starting torque (Nm) 260 265.24 -2.01 255.68 1.66 255.93 1.56 

Starting current(A) 180 190.56 -5.8 183.89 -2.16 185.9 -3.28 

Maximumtorque (Nm) 370 394.71 -6.7 380.48 -2.83 379.02 -2.44 

Full load torque (Nm) 190 178.17 6.22 172.6 9.16 181.89 4.2 

Full load current (A) 45 43.6 3 42.32 5.96 44.2 1.77 

Full load power factor 0.8 0.829 -3.6 0.833 -4.17 0.814 -1.75 

Full load efficiency( %) 90 90.65 -0.72 90.5 -0.55 90.4 -0.45 

Values Motor 1 Motor 2 

PSO IPSO PSO IPSO 

Best 0.0186 0.01789 0.00247 0.00236 

Worst 0.0285 0.0239 0.0036 0.00275 

Deviation (%) 53 34 45.75 20.8 
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5.1.2 Convergence characteristic 
Figure 4 shows convergence characteristic for the sample motor 

1 by IPSO and PSO methods. As it can be seen, the two 

methods have rapid convergence characteristic. However, 

because the PSO brings premature convergence, its average 

squared error is larger than IPSO method.  Thus the proposed 

IPSO method performs better convergence speed than the PSO 

method, and the simulation results show that the IPSO 

outperforms PSO. 
 

6. CONCLUSION 
 This paper presents a novel approach for solving the parameter 

determination problems from the manufacturer data based on 

the improved particle swarm optimization (IPSO) algorithm. 

The IPSO uses chaotic sequences for weight parameter to 

improve the global searching ability and escape from local 

minima. The IPSO method has been tested on two sample 

motors and the results were compared with that obtained using 

the PSO and classical methods. It has produced better results 

than the PSO method and the solutions obtained have superior 

solution quality and good convergence characteristics. 
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