
©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 25

28

An Approach to Detection of SQL Injection Attack Based

on Dynamic Query Matching

Debasish Das, Utpal Sharma & D.K. Bhattacharyya
Department of Computer Science & Engineering

Tezpur University
 Napaam (INDIA)

ABSTRACT
A large number of web applications, especially those deployed by

companies for e-business operations involve high reliability,

efficiency and confidentiality. Such applications are often written

in script languages like PHP embedded in HTML, allowing

establishing connection to databases, retrieving data, and putting

them in the Web. One of the most common in web application

attacks is SQL Injection. In this an attacker attempts to use

malicious crafted input strings so that the dynamic SQL queries

generated by the web application is different from the structure

designed by the developer. In this paper, an attempt has been

made to classify the SQL Injection attacks based on the

vulnerabilities in web applications. A brief review of the existing

approaches for the detection of SQL injection attack also has been

presented. Further paper presents an effective detection method

(DUD) for the SQL injection based on dynamic query matching.

The DUD approach is independent of the developer’s

initialization of syntactical rules, valid trusted string database,

static or pre-generated program code checking, etc. Also, DUD is

significant in view of its simple detection mechanism as well as its

high detection rate.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Access Control, Authentication,

Information Flow Controls, Verifications.

General Terms
Algorithms, Performance, Design, Reliability, Experimentation,

Security.

Keywords
Web, PHP, SQL injection, classification, DUD.

1. INTRODUCTION
A web application is software which end users can access through

client modules that run in web browsers. The client modules are

coded in browser-supported language (such as HTML, Java, ASP,

PHP etc.). The client module connects to application module over

* The department is funded by UGC’s DRS-Phase I under the

SAP a network such as the internet or an intranet. In three tire

web applications, the user provides query specification as input

fields in predefined input form. These input values are used to

construct SQL queries by the application server in the middle tire.

Web applications are popular due to the ubiquity of web

browsers, and the convenience of using a web browser as a client,

sometimes called a thin client. The ability to update and maintain

web applications without distributing and installing software on

potentially thousands of client computers is a key reason for their

popularity. Common web applications include web mail, online

retail sales, online auctions, online banking, and many other

functional applications. There are two types of web applications-

Presentation-oriented: A presentation-oriented web application

generates interactive web pages in various types of markup

language (HTML, XML, and so on) and containing dynamic

content in response to requests.

Service-oriented: A service-oriented web application implements

the endpoint of a web service. Presentation-oriented applications

are often clients of service-oriented web applications.

Based on Mitre’s Vulnerability statistics[10] (Evaluation from

2004-2006), there are five most reported vulnerability classes –

SQL Injection, Cross Site Scripting(XSS), PHP File Inclusion,

Buffer Overflow caused Denial of Service, and Directory

Traversals. XSS and SQL Injection are consistently at or near the

top 21.7% and 16% of the reported vulnerabilities in 2006-2007.

2. SQL INJECTION ATTACK (SQLIA):
SQL Injections are one of the most common and easiest

techniques adopted by the attackers, to attack the web server, data

server and sometimes the network. This category of attack is

conducted by spammers for unauthorized web application access,

breaking the role based accessibility and violating the integrity of

the data storage. SQL injection attack (SQLIA) poses a serious

threat to the security of web applications. Spammers conduct such

attack by changing the developer’s intended structure of an SQL

command by inserting specially crafted input, in the form of SQL

keywords and operators. Formal definition of SQL injection

attack is given by Su and Wassermann [14].

3. CLASSIFICATION BASED ON

VULNERABILITIES
Our literature survey reveals that the SQLIA can be classified into

five basic classes based on the vulnerabilities in web applications.

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 25

29

3.1 Bypassing Web Application

Authentication [1][6][11]
This is the most common usage adopted by the attackers to bypass

authentication pages, used in web applications. In this category of

attack, an attacker exploits an input field that is used in a query’s

'where' condition part. An example is given below:

Example 1: Suppose there is an input form with the fields

“username” and “password”, using this user can retrieve his

balance. The following PHP code for the application server,

written by a web application developer has vulnerability for SQL

injection attack:

[1] $connection=mysql_connect();

[2] mysql_select_db("test");

[3] $user=$HTTP_GET_VARS[’username’];

[4] $pass=$HTTP_GET_VARS[’password’];

[5] $query="select balance from users where login=’$user’

and password =’$pass’";

[6] $result=mysql_query($query);

[7] if (mysql_num_rows($result)==1) echo “Authorized”

[8] else echo "authorization failed";

User data typed in a web form are assigned to variables “user” and

“pass” and then used to obtain the SQL statement. Query (i)

given below is generated after entering valid username ‘devid’

and valid password ‘d123’ by legitimate user.

Query = "select balance from users where login=’devid’ and

password=’d123’"; ---(i)

If an intruder types:′ or 1=1--′ in the username field leaving the

password field empty, the structure of the SQL query will be

changed. Query (ii) given below is generated with SQL injection

by the attacker.

Query = "select balance from users where login=’’ or 1=1 --’ and

password=’’"; ---(ii)

Two dashes comment the following text. Boolean expression 1=1

is always true and as a result user will be logged with privileges of

the first user stored in the table users.

3.2 Getting Knowledge of Database

Fingerprinting [1][2][11]
This attack is considered as pre-attack preparation by an attacker.

This category of attack is performed by entering some inputs by

which it generates an illegal or the logically incorrect queries. The

error messages reveal the names of the tables and the columns that

cause error. The attacker also comes to know about the

application database used in the backend server. Following is an

example:

Example 2: An attacker enters as input “convert(select host from

host)”. The resulting query with respect to the PHP code given in

(i), is shown below:

Query = "select * from users where login=’devid’ and

password=convert(select host from host)"; Thus the injected query

generated, first tries to execute the column host from host table.

The host table consists of the information about the users

privileges. The query tries to convert the host column data into an

integer. As this is not a legal type conversion, the database server

returns an error message as follows:

Error message by MySQL Server:

ERROR 1064: You have an error in your SQL syntax. Check the

manual that corresponds to your MySQL server version for the

right syntax to use near ‘user=’devid’ and password=

convert(select host from host)’ at 1.

Thus, attacker will come to know the database used in server and

the name of the columns. Sometimes it displays the table name

also.

3.3 Injection with UNION query [1][11]
In such an attack, an attacker extracts data from a table which is

different from the one that was intended in the web application by

the developer. Following is an example:

Example 3: By entering an input “UNION SELECT <injected

select query>”, the runtime query generates with the SELECT

query, with respect to the query given in Example 1, as -

Query = “Select * from users where login= ’ ’ UNION select

balance_amt from customer_savings where account_no = 622289

-- and password=’d123’"; In this example the actual runtime

query returns null data, however, the injected query generates data

from the table customer_savings. Some of the database

applications return balance amount along with the user details.

3.4 Damaging with additional injected query

[1][6][11]
This category of attack is generally very harmful. An attacker

enters input such that an additional injected query is generated

along with the original query. Following is an example:

Example 4: If the attacker inputs ″ ′ ; drop table user – ″ into the

password field, the corresponding runtime query with respect to

the query in the Example 1 generates -

Query = "select * from users where login=′devid′ and password= ′

′ ; drop table user"; When the database server executes the second

injected query, a harmful operations may also be performed on the

database with such injected query(s).

3.5 Remote execution of stored procedures

[1][3][4][6][8][11]
This category of attack is conducted by executing the procedures,

stored previously by the web application developer. Following is

an example

Example 5: Entering ″ ′ ; SHUTDOWN; -- ″ to any of the input

field, the query generates as given below:

Query = “Select accounts from users WHERE login=′ ′ ;

SHUTDOWN; -- password=′ ′;

Based on the above classification, the attack detection and

prevention approaches are reported in the next section.

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 25

30

4. SQLIA DETECTION AND

PREVENTION APPROACHES
Approaches for detection of SQL injection attack can be

categorized into – pre-generated and post-generated. Runtime or

dynamic or post generated approaches are useful for analysis of

dynamic SQL query, generated by web application. Before

posting a query to the back tire or database server for execution,

analysis, and detection followed by blocking or correction of the

query is done. Pre-generated or static approaches are desirable

during the testing phase of software. While developing the web

applications, programmers should followed some steps for SQL

injection attack (SQLIA) detection. An effective validity checking

mechanism for the input variable data is also a requirement for the

pre-generated technique of the detection of SQLIA. Some of the

existing post generated and pre-generated approaches

implemented for detection of SQLIA, are cited below.

4.1 Post-Generated Approach
We discuss three popular detection mechanisms of SQLIA using

post-generated approach.

4.1.1 Positive Tainting and Syntax Aware

Evaluation[13]:
In this approach valid input strings are initially provided to the

system for detection of SQLIA. At runtime, it categorizes input

strings and propagates the untrusted or other-than-trusted

markings based on the initialization. After that, a ‘syntax aware

evaluation’ is performed for evaluating the propagated strings.

Thus, based on the evaluation, if untrusted strings are found, such

queries are restricted from passing into the database server for

processing. During initialization of the trusted strings, it performs

identification and marking based on inputs. The strings are

categorized as: (i) hard coded strings, (ii) strings implicitly created

by Java and (iii) strings originated from external sources. In case

of syntax-aware evaluation, it performs syntax evaluation at the

database interaction point. Syntax defines the trust policies which

are the functions defined by the web programmer. Functions

perform pattern matching and if the result of matching gives

positive outcome, the tool allows the query to be executed on the

database server. Following issues are there in this method - (i)

Initialization of trusted strings are developers dependent and (ii)

Persistent storage of trusted strings may cause second order

attack[1].

4.1.2 Context Sensitive String Evaluation (CSSE)

[12]:
The basic idea behind this approach is to find out the root cause

of SQLIA. The root cause is the origin of the data (information

about the data, termed as metadata) i.e., user-provided or

developer-provided. Thus, any data provided by the user is

marked as untrusted and data provided by the applications are

termed as trusted. The untrusted metadata are used for syntactic

analysis based on ‘Context Sensitive String Evaluation (CSSE)’.

Injection vulnerabilities may also occur due to programming flaws

during developments. CSSE is basically based on syntactical

analysis, which first distinguishes string constants (e.g., select *

from users where login=’$login_name’) and numerical constants

(e.g., select * from users where pin=$pin). It then removes all

unsafe characters (un-escaped quotes) in alphanumeric identifiers

and non-numeric characters in numeric identifiers. This operation

is performed before sending the query to the database server.

Following issues are there in this approach - (i) Initialization of

the unsafe characters is dependent on the web programmer, and

(ii) Removal of unsafe characters restricts the application

functionality.

4.1.3 Parse tree evaluation based on grammar [14]:
The basic idea of this method is to block those queries generated

from user input, which defy the syntactic structure of the query, as

defined by the developer. SQL queries generated at runtime are

parsed based on a pre-defined grammar. Runtime SQL generated

is parsed based on the grammar. Special literals ‘(|’ and ‘|)’ are

used to mark the beginning and end of each input string. Each

such string within markers-pairs is matched with the augmented

grammar constructed for the purpose. If the query parses

successfully, it meets the syntactic constraints and is declared as

legitimate. Otherwise, it is declared as illegitimate and is blocked.

A major issue of this method is that an attacker may manipulate

the input string by entering the marking symbol ′ |)′ . Thus the

syntactical confinement of the string surrounding with ′(|′ and ′|)′

may be affected.

4.2 Pre-Generated Approach

4.2.1 Pixy : A Static Analysis Tool [7]:
Pixy is used for detecting web application vulnerabilities. It is

based on statistical approach which uses data flow analysis for

detecting tainted data i.e. data entered by malicious user. Using a

set of suitable operations, tainted data can be sanitized, i.e. the

harmful properties can be removed. The authors assume that the

SQLIA occurs only due to concrete values of some parameters.

Identifying such parameters and their removal makes the

application free from SQLIA. Data flow analysis has been applied

to statistically compute certain information for every single

program point. A parse tree is developed based on the input from

the users and a taint analysis tool is used to identify the points

where tainted data can enter into the program. It then propagates

the tainted values along the assignments and similar constructs in

the program. This tool also performs alias analysis to handle the

effect of tainting other aliases. A literals analysis gives knowledge

about the literal values that variables and constants may hold at

each program point. A major issue of this method is that- since

Pixy is an open source tool, an attacker may have scope(s) to

bypass it by exploiting the features available in it.

4.2.2 Program Query Language(PQL)
[9]:

A PQL is developed specially for web application programmers to

retrieve attack related queries. It also incorporates a static

technique which finds the solutions to such attack related queries.

The static analyzer finds all potential matches conservatively

using context-sensitive as well as flow-insensitive analysis. This

static result guides the runtime or dynamic analysis. A PQL is a

pre-defined grammar based language. It has query variables

(arguments), statements (primitive, compound), subqueries

(recursive event sequences or recursive object relations) reacting

to match (print or abort etc.). A static checker and optimizer,

translates by PQL into queries. The translation of the PQL into

‘datalog’ (another more expressive language) provides sufficient

support to programs to resolve the attack related queries. One of

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 25

31

the major issues of this method is that resolving the attack related

queries, based on the output (available with the datalog) is mostly

developer dependent.

Based on our survey, we observe that -

• The pre-generated detection techniques for SQLIA

depend on the effectiveness of the validity checking by

the web programmer and the effectiveness of the tools

applied to detect the integrity of the code that causes

SQLIA.

• The post generated approaches for detection of SQLIA

are based on the initialization of trusted or untrusted

strings, which are developer-dependent. The approach

given in [14] may be considered better than the others.

However, it also has the possibility of manipulation of

the strings by the attacker.

In the next section we present an effective matching mechanism

DUD, for dynamic SQLIA detection which can successfully

overcome the shortcomings of the above methodologies.

5. DUD: AN SQLIA DETECTION

APPROACH
Our proposed strategy for SQLIA termed DUD, is a post

generated approach based on query classification. DUD is

dependent on a user defined threshold Є. It first generates SQL

Master File(SQLMF) for a web application. The SQLMF for a

web application consists of the legitimate distinct SQL queries

generated dynamically. The flow diagram is shown in figure 1.

 Figure 1 Flow diagram of our proposed solution to SQLIA

Detection and Blocking

The matching mechanism used in DUD consists of the following

steps -

(1) Read a dynamic or runtime input SQL and convert it into

XML form called XSQL;

(2) Initiate exact matching process with SQLMF and XSQL -

(a) if XSQL∈SQLMF, then

 - declare as ‘Safe Query’ ;

- pass to the database server for processing

and go to step (5);

(b) else generate ‘attack alarm 1’;

- call approximate matching() and store the

result, Edit_Distance in υ;

(3) If υ > Є then

 { - generate ‘attack alarm final’;

- block the query from passing to the database

server; }

(4) Else

{ - allow the query to pass to the database server

for processing;

 - update SQLMF with input SQL;}

(5) Stop;

The mechanism used in DUD is fast and effective due to the

following points:

• Avoids the initialization of trusted/untrusted

strings/characters;

• Easy to implement matching logic;

• SQL master file is adaptively updated;

• No restriction is imposed on user input

strings/characters;

• Developer independent;

It is considered that the structure of the dynamically generated

SQL queries, are not constant. Thus, we have converted each SQL

query into XML form before initiating the matching process of

DUD. SQL queries in XML form are defined as XSQL. DTD

(Document Type Definition) of the XML equivalent of an SQL

query is given in figure 2 below:

Figure 2 Document type definition (DTD) of XML equivalent

of SQL query

An automatic parser based on the DTD given in figure 2 convert

SQL query into XML form. For query given in example 1, the

XML equivalent called XSQL is shown in figure 3.

<!Element Select (attribute)*

<!Element From (table)*

<!Element Where (expression, (Logical_Operator,

Expression)*)

<!Element Expression (Identifier, Relational_Operator,

Value)

<!Element Logical_Operator(AND|OR|NOT)

<!Element Identifier(#pcdata)

<!Element Relational_Operator (= | != | < | > | ≤ | ≥ |)

<Element Value (#cdata)

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 25

32

Figure 3 XML record based on DTD given in figure 1

5.1 Algorithms
The text content of SQLMF(T) are a set of n number of legitimate

SQL queries (where, 1≤n). Each query is expressed as a sequence

of elements {s1,s2,..,sn΄}. Each element is a string of characters.

The text pattern (P) of the dynamic query, is expressed as one or

more elements {s΄1,s΄2,..s΄na}, where, 1≤ na. An element may have
one or more sub elements, identifiers and values. A function

element_count(P) computes the number of elements in P. Each

element is separated from others by semicolon (;). The algorithms

for performing exact matching and approximate matching are

given in 5.1.1 and 5.1.2 below:

5.1.1 Exact Matching:
Input : T, P

Output: Safe Query, Attack Alarm I

[a] match_count ← 0;

[b] For i= 1 to n do

Begin

[d] If (P=Ti) then {

 - Add 1 to match_count;

 - Declare ‘Safe Query’;

 - Exit; }

[e] End if;

[f] End For Loop;

[g] If (match_count=0) then {

 - Declare ‘Attack Alarm I’;

 - Call Approximate Matching; }

[h] Stop;

5.1.2 Approximate Matching:
Input : T, P, Є

Output: Safe Query, Attack Alarm Final

[a] k = element_count(P);

[b] For i = 1 to n do {

[d] For j = 1 to k do {

[d] If (P[j] ≠ T[i][j]) then

[e] D[i] ← D[i] + 1 ;

[f] Enf if ; } }

[e] Edit_Distance ← 0 ;

[f] For i = 1 to n do {

[g] Edit_Distance = MIN (D[i]); }

[h] If (Edit_Distance < Є) then {

 - Declare ‘Safe Query’ ;

 - Execute P; }

[h] Else {

[i] - Declare ‘Attack Alarm Final’ ;

[j] - Block P; }

[k] End if;

[l] Stop;

5.2 Architecture of DUD
The architecture of DUD is shown in figure 4. The detection

module has installed in web server in three tire architecture of

web application system. The web server is connected with

database server and is accessible to web clients.

Figure 4 Architecture of the proposed approach

implementation

6. EXPERIMENTAL RESULTS
We implemented our method DUD in a three tire web application

having MySQL database in back tire. The middle tire is configured

as web application server. We tested the proposed DUD in a

simulated environment using three files file 1, file2 and file 3. File

1 contains SQL statements due to legitimate queries to one of the

web application packages of our University intranet web server.

File 1 is considered as SQLMF. File 2 contains SQL injected

queries due to queries from attackers. The third file - file 3

contains SQL queries and considered as input from legitimate

users. At first file 1 and file 3 are matched using DUD. Then file 1

and file 2 are matched. In table 1, table 2 and table 3, a sample

shot of file 1, file 2 and file 3 are shown. The file 3 consists of

<select>

<attribute attribute_name=balance </attribute>

<from>

<table table_name=users </table>

</from>

<where>

<expression>

<identifier identifier_name = use </identifier>

<relational operator relational operator = = </relational

operator>

<value value = abc </value> </expression>

<logical operator logical operator = AND </logical

operator>

<expression>

<identifier identifier_name=password </identifier>

<relational operator relational operator = = </relational

operator>

<value value = ab123 </value>

</expression>

</where>

</select>

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 25

33

some new legitimate queries not available in the file 1. The ‘edit

distance’ value while matching file 1 with file 3 are found to be

zero. It may be mentioned that while matching we have avoided

the null value ′ ′. We found the minimum edit distance value 12,

while matching between file 1 and file 2. Thus, from this

experiment we can come to the initial conclusion that attackers’

SQL injected queries has edit distance value at least 12.

7. CONCLUSION AND FUTURE WORK
In this paper, we have presented a survey on different classes of

SQLIA and some of the important approaches for detection of

SQLIA. We have also presented a new technique DUD for

detection of SQLIA. The detection result produced, are based on

the simulated experiment. The edit distance value may be changed

with the matching of more and more injected queries. Thus, the

threshold value for detection of SQLIA based on matching is an

empirical one. To avoid stolen key attack on SQLMF, the

encoding of SQLMF is required. To increase the efficiency of

matching, the indexing of SQLMF is required. To accommodate

the variable structure of dynamically generated query based on

user input, the SQL query is converted into XML for before

initiating the matching process of DUD. Thus, future evaluation

work should focus on efficiency of the matching technique. More

experimentation is required for generating an adaptive threshold

value. Empirical evaluations such as those presented in related

work with more real life dataset would allow for comparing the

performance of DUD. While generating SQLMF for a web

application, it is recommended that it should have at least one

query with respect to its one application.

Table 1. A Sample shot of SQL master file stored in File 1

constructed with legitimate query of a web application

Query

id

 Actual Query

1 Select emp_code from employee where

user=’mks’ and password=’mk123’

2 Select emp_code from employee where

user=’ddas’ and password=’deb_dd’

3 Select emp_code from employee where

user=’rgos’ and password=’rg123’

4 Select basic,da,hra from allowance where

emp_code=102 and user=’pkb’ and

password=’pk421’

5 Select pf, ptax, itax from deduction where

emp_code=102 and user=’pkb’ and

password=’pk421’

6 Select basic,da,hra from allowance where

emp_code=221 and user=’sis’ and

password=’si128’

7 Select pf, ptax, itax from deduction where

emp_code=221 and user=’sis’ and

password=’si128’

Table 2. A Sample shot of SQL File 2 constructed with

illegitimate or SQL injected query of a web application

 Input Query

Select emp_code from employee where user=’ddas’ and

password=’ ‘ or 1=1

Select basic, da, hra from allowance where login=’devid’

and password = convert (int(select top 1 tname from

syscatalog where tabletype=’u’))";

Select pf, ptax, itax from deduction where login=’ ‘ UNION

Select balance from account where emp_code=122;

Select * from balance where login=’ ‘ and password=’ ‘;

drop table user;

Select * from balance where login=’ ‘; SHUTDOWN; and

password=’ ‘ or 1=1;

Table 3. A Sample shot of SQL File 3 constructed with

dynamic SQL query generated from legitimate input of a web

application

 Input Query

Select emp_code from employee where user=’ddas’ and

password=’deb_dd’

Select basic,da,hra from allowance where emp_code=221 and

user=’sis’ and password=’si128’

Select basic,da,hra from allowance where emp_code=441 and

user=’dkr’ and password=’dk987’

8. REFERENCES

[1] C Anley. Advanced SQL Injection in SQL Server

Applications. White Paper Next Generation Security

Software Ltd., 2002.

http://www.nextgenss.com/papers/advanced sql injection.pdf

[2] D. Litchfield. Wep Application Dissembly with ODBC Error

Messages. Technical document, @Stake,Inc.,2002.

[3] E. M. Fayo. Advanced SQL Injection in Oracle Databases.

Technical Report, Agencies Information Security, Balck

Hat Briefings, Black hat U.S.A., 2005

[4] F. Bouma. Stored Proceduresare Bad, O’Kay?

TechnicalReport. Asp.Net Weblogs, November 2003.

http://weblogs.asp.net/fbouma/archive/2003/11/18/38178.asp

x

[5] K. Krithivasan and R. Sitalakshmi, “Efficient Two

imensional Pattern Matching in the Presence of Errors”,

Information Sciences, Vol. 43, 1987, pp. 169-184.

[6] M. Howard and D Le Blane. Writing Secure Code. Microsoft

Press, Redmond, Washington, second edition, 2003.

[7] Pixy: A Static Analysis Tool for Detecting Web Application

Vulnerabilities by Nenad Jovanovic , Christopher Kruegel ,

Engin Kirda, IN 2006 IEEE SYMPOSIUM ON SECURITY

AND PRIVACY

[8] P. Finnigan. SQL Injection and Oracle – Part 1 and Part 2.

Technical Report, Security Focus, November 2002.

[9] Finding Application Errors and Security Flaws Using PQL: a

Program Query Language. OPSLA’05, October 16-20, 2005,

San Diego, California, USA

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 25

34

[10] Steve Christey. Vulnerability Type Distributions in CVE,

October 2006. http://cwe.mitre.org/documents/vuln-

trends.html

[11] S.McDoland. SQL Injection. Modes of Attack, defence and

why it matters. White paper, GovernmentSecurity.org, April

2002

[12] Tadeusz Pietraszek and Dhris Vanden Berghe. Defending

against Injection Attacks through Context-Sensitive String

Evaluation. Proceedings of Recent Advances in Intrusion

Detection (RAID2005).

[13] William G.J. Halfond, Alessandro Orso and Panagiotis

Manolios. Using Positive Tainting and Syntax-Aware

Evaluation to Counter SQL Injection Attacks. .

SIGSOFT’06/FSE-14, November 5-11, 2006, Portland,

Oregon, USA.

[14] [Z.Su and G. Wassermann. The Essence of Command

Injection Attacks in Web Application. In the 33rd Annual

Symposium on Principles of Programming languages, pages

372-382, Jan. 2006.

