
©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 26

117

A New Collaborative Trust Enhanced Security Model

for Distributed System

Aruna Kumari
CSED, MNNIT Allahabad

 (INDIA)

Shakti Mishra

CSED, MNNIT Allahabad

 (INDIA)

D.S. Kushwaha

CSED, MNNIT Allahabad

 (INDIA)

ABSTRACT

Designing a distributed system with the characteristics of

reliability and trustworthiness is an important issue. Yet another

important issue in the distributed system is the access to remote

system which can be achieved on the basis of certain access

rights, policies or authorization semantics. The aim of this paper

is to establish a collaborative trust enhanced security model for

distributed system in which a node either local or remote is

trustworthy. This paper also provides a promising solution with

trust policies as authorization semantics. While designing a new

secure distributed system, it has been observed that mostly the

new nodes joining the system are insecure. If these perfidious

nodes are provided full authorization, they can perform malicious

activities in the system. In the proposed solution, node registry

and service level agreements are used to ensure the trust for a new

client node. Kerberos, a network authentication protocol is also

used to ensure the security aspect when a client requests for

certain services. In the proposed solution, we have also considered

the issue of performance bottlenecks. A Reactive agent system is

proposed to balance the load of service providers with the aim of

enhancing the performance of the distributed system.

General Terms

Security

Keywords

Kerberos, Service level agreement, Capability list, Agent System

1. INTRODUCTION AND SURVEY OF

RELATED WORK
One advantage of using distributed system includes the ability to

connect remote users with remote resources in an open and

scalable way. However, this scalability and openness leads to

insecurity. Various organizations considerably depend upon

effective use of distributed systems and the level of their

protection and security. Many issues such as data storage, data

transfer, automation of information processing and complex

problems solving demand confidentiality and integrity in trusted

environment [15]. Our primary focus is on the identity of the

users in the system at each level such as at the entry level, at

requesting a resource or at providing resources.

A distributed computing refers to the use of distributed systems to

solve many problems where a problem is divided into many tasks,

each of which may be solved by different user or different system.

It also refers to autonomous processes that run on the same

physical computer and interact with each other by message

passing.

[7], has identified some fundamental challenges of security-aware

distributed computing.

 The first challenge is to specify security requirements

for a distributed activity.

 The second challenge is to design and implement

distributed security-aware system, which can meet

specific requirements of applications executing in it.

 The third challenge is to introduce a new set of

performance metrics including the level of security.

The level of security of a system can be presented by a

formal measurement model based on the level of

security of individual tasks.

Our paper conforms the authorization and authentication aspect of

secure distributed system. Authorization is based on the concept

of specifying access rights to a resource. Authorization

collectively works with the concept of authentication which

addresses how to determine the identity of nodes with a high

degree of confidence. Trusted users that have been authenticated

are often authorized to unrestricted access to resource. According

to [18], this authentication and authorization approach uses

password based methods to identify the identity of users.

However, assertion based authentication schemes hardly qualifies

as authentication at all since such authentication is easily thwarted

by modifying the application. To solve this problem, stronger

authentication methods based on cryptography are required.

Kerberos is the most commonly used technique for this type of

authentication methodology.

Kerberos is a time-tested and widely used lightweight protocol

based on inexpensive symmetric key cryptography. Kerberos [10,

13] allows a user to authenticate once and then connect to

application servers within the Kerberos realm without

authenticating again for a period of time. It is a distributed

authentication service that allows a client running on behalf of a

user to prove its identity to a verifier (an application server, or just

server) without sending data across the network that might allow

an attacker or the verifier to subsequently impersonate the

principal. It is a third party based authorization system. The

predominance of Kerberos involves independent development

platform, high speed communication of authentication, mutual

authentication between entities and transferable relationship of

trust, and a relatively strong compatibility with heterogeneous

domains which may adopt various trust policies [4, 15].

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 26

118

The Kerberos server consists of an Authentication Server (AS)

and a Ticket-Granting Server (TGS). The AS and TGS are

responsible for creating and issuing tickets to the clients upon

request. The AS and TGS usually run on the same computer, and

are collectively known as the Key Distribution Center (KDC).

Security model for authentication and authorization based on PKI

(Public Key Infrastructure) and Kerberos under a cross domain

condition in distributed system is proposed in [4]. It focuses on

the issue to establish trust relationship across heterogeneous

domains due to different trust mechanisms and security policy.

The author [4] also discusses the concept of “information isolate

islands”.

Trust is required everywhere in the distributed system but where

to implement the trust policies is a main issue of any distributed

system. Trust focuses on the security of utility [10]. It may be

applied when a node joins the system as a client, or when it

requests for the services, etc. If every access request is authorized,

illegal information flow might occur as the well known

confinement problem [5].

To understand the requirement of trust let us consider an example

of a group of friends. D, a friend of A but not part of that group in

which A is, wants to join the group. D requests A to convince

others to join him. A introduces D as a new group member but

the existing members are not ready to share their confidential

matters with D. They permit D to join the group but decided not

to share their matters until they found D as reliable.

Several researchers have worked in the area of trust for distributed

system. Various economical models to characterize malicious

behaviors in the security contact with the aim to mitigate the risk

introduced by malicious behavior are discussed in [10]. Jaeger et

al [11] emphasizes on the need of trust in the distributed system

and the problem associated with it. The Author [11] also discusses

various issues like misconfiguration or vulnerable software limits,

enforcement of flexible distributed system security goals, and

scalable solution for a single machine, while implementing trust in

large scale distributed system. Trustworthiness is a holistic

property, encompassing security (conventionally including

confidentiality, integrity and availability), correctness, reliability,

privacy, safety and survivability [15].

Trust Management, introduced by Blaze et al [3] is a unified

approach to specifying and interpreting security policies,

credentials, and relationships that allows direct authorization of

security-critical actions. In particular, a trust management system

combines the notion of specifying security policy with the

mechanism for specifying security credentials [14].

At the heart of trust management systems is the authorization

procedure, which determines whether resource access should be

granted or not based on a number of conditions. The semantics of

authorization provide meaning to the features supported by trust

management systems, for both the policy maker and the resource

requester. In a security setting, entities should be able to specify

policies precisely, to have an absolute clear idea of the meaning of

their policies, and to have confidence that they are correctly

enforced by authorization mechanisms [3]. To ensure

trustworthiness in the proposed trust model, we have considered

different criteria like the history of the new client and server

before making them a part of the distributed system.

The trusted intermediaries [16] are the systems which authenticate

clients and servers such as the Certificate Authorities in public

key based systems and KDC in Kerberos. With an increase in

number of users that require authentication, trust intermediaries

faces a challenge of scalability. If the challenge is not met, users

can experience significant delays in authentication, or be forced to

accept an increase risk or fraudulent credentials. The author in

[16] describes a method for fully distributed authentication using

public key cryptography within the Kerberos ticket framework

and to enhance security and scalability by distributing most of the

authentication workload away from the trusted intermediary and

to the communicating parties is discussed in [16].

The author’s approach in [10] shows that the decisions taken by

security mechanisms, such as the authorization decisions in a

distributed system can have a direct impact on the security of the

underlying system. The trust-based theoretic model [10] possesses

a unique feature- the ability to use trust evaluation to not only

weed out malicious entities, but also allocate appropriate access

permissions to the benevolent entities according to the risk levels.

It integrates risk into security via trust and allocates a particular

risk level for a given transaction, in order to maximize the utility

gain obtained from honest and competent transactions from the

trusted entities of the same system.

The interaction between nodes and resources allocation with

trustworthiness dimensions is a central challenge in building a

trustworthy distributed system. Since a new node may not only

request network resources, it may also be interested in using a

third party service; there services also need to be secured. The

service is an exposed piece of functionality which can be

dynamically located and invoked. The service provider creates a

service and publishes its interface and access information to the

service registry maintained by a system which is known to clients.

It has been observed that the violation of information security is

based on the activities of the users of an organization. A solution

to this problem is proposed in the Agent approach [9]. The

activities are monitored and any abnormal activity is regarded as

potential intrusion. An Agent based approach [9] envisages on-

line and off-line monitoring in order to analyze users' activity. It

relies on information confidentiality, integrity and accessibility.

The traditional methods such as identification and authentication,

access restriction, etc., approaches are basically rigorous and

deterministic. There are many drawbacks associated with

traditional models like low agility of internal malicious users’

detection, inability to process large amounts of information, low

productivity, etc. The Agent approach [9] uses neural networks to

carry on-line monitoring and the analysis of statistical information

obtained during user’s work to carry off-line monitoring.

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 26

119

Although various issues have been resolved by many of the work

done by previous researches, issues like the life time of the client

and server in the distributed system, new semantics for trust based

on identity, load balancing feature of controller systems for

resource allocation still needs attention. In our work, we have

made an attempt to propose a centralized approach to build the

trust in the distributed system considering the workload of the

systems.

The rest of the paper is organized as follows. Section 2 gives an

overview and features of the proposed approach. Section 3

includes the components and design of proposed model.

Conclusions and future work are given in section 4.

2. PROPOSED APPROACH

2.1 Introduction to Proposed Approach
To implement trust policies, is a major concern while designing

trusted environment. In the proposed approach, the trust is

maintained at the initial phase when a new node joins the

distributed network. We have embodied the traditional security

model with services as client has to authenticate before making a

request. We have assumed that in every organization, there are

some trustworthy nodes which perform coordination and

management. The entire system is controlled by such trustworthy

central coordinator which keeps the information about all nodes

including number of nodes, number of resources and services

present in the system.

The proposed approach enhances the performance of complete

system by sharing the authentication workload among all other

nodes. To accomplish this goal, we have devised an agent based

system with various functionalities as monitoring the servers,

balancing the load of service providers and service request in case

of unavailability of servers.

The agent system in the proposed approach has reliability,

autonomy, reactivity, proactiveness, social ability, and rationality

features. It receives the client's request, checks its database for

the requested service and the load status of the service providers

and responds according to the status. It interacts with the clients

and servers and according to their requirements it behaves. It has

a goal directed behavior that is servicing other nodes in the

system. The agent system is also designed to achieve the goal of

improving the performance over time. For example, if agent

notices the unavailability of service providers, it can itself serve

the client's request.

To maintain the trust, each node is required to register itself to

SuperHost which is a trustworthy system with highest trust level.

Registering of a node does not mean that it is authorize to obtain

all the services and resources of the distributed system. A client

has to authenticate itself with KDC to get the reference of Agent

system. The agent system is another trustworthy system which is

authorized by the SuperHost. The security of the distributed

system is enhanced by observing the activities and location of the

client by SuperHost. The client may be a perfidious client who has

joined the distributed system and wants to occupy more and more

resources and services by behaving as a group of multiple users. A

SuperHost system keeps the track of such clients and regulates

their uncontrolled behavior.

2.1.1 Features of Proposed Approach

2.1.1.1 Assumptions
Some constraints are used for joining the client in the distributed

system like client must have to share some resources such as

processor, some basic services, etc., in order to access the existing

resources and services of the distributed system. Client has to

inform about duration of its availability in the distributed system

to SuperHost. The load index of server is assumed in terms of

number of clients associated with it.

2.1.1.2 Load Balancing
In the proposed model, an agent system is used to balance the load

of service providers. Agent records the service registries and

maximum load that a server can handle in terms of clients. Agent

allocates the list of below loaded servers to client. Whenever a

client requests for a service, agent provides the references of

servers according to their load status. In the case of unavailability

of server for a requested service, the agent provides service by

itself, if it has any. Similarly, if all the servers are overloaded for

the requested service, the agent system can play the role of server

by itself.

2.1.1.3 Life time of Client and Server
The life time of client and server is controlled by SuperHost.

However the client and server can also make an explicit leaving

request to SuperHost. In the former case, at the time of joining the

system, SuperHost informs client about its life time. If client

remains idle for a predefined period of time, the SuperHost can

retrench the client from the system implicitly assuming that client

does not want to continue with this system. In the same way, if

server does not make any attempt to modify or update its services

for a fixed period of time, it will no longer be allowed to remain

server.

3. PROPOSED COLLABORATED TRUST

ENHANCED SECURITY (CTES) MODEL

3.1 Components of CTES Model
The components of proposed CTES model are defined as follow.

3.1.1 SuperHost
SuperHost is the trustworthy node which acts as central controller

of systems. This system is also responsible to investigate the

client about its trustworthiness, to monitor the life time of clients

and servers. It provides various to users related to its operation

such as record update, reference of Authentication Server (AS) to

client and reference of agent to server respectively.

3.1.2 KDC
KDC (Key Distribution Center) is a collective name for AS

(Authentication Server) and TGS (Ticket Granting Server) under

Kerberos realm. Each client contacts AS to receive TGT (Ticket-

Granting Ticket) and then TGS to receive a session key and a

SGT (Service-Granting Ticket) before making a request for

services.

3.1.3 Agent
The proposed agent system is assumed to be a trustworthy system.

An agent system registers the services offered by servers, keeps

load status of service providers, provides the list of servers on

request of client, and serves the request of client in case of

unavailability of service providers.

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 26

120

3.1.4 Client
Any new node registered by the SuperHost is termed as client

node. Each node is required to send a request to SuperHost at the

time of joining the system. A unique client_id has been assigned

to each client by SuperHost. A client can make requests for

services and resources in the distributed system for which it has to

authenticate through the KDC.

3.1.5 Server
Server is a service provider which is authorized by the SuperHost

to provide services in the distributed system.

3.2 CTES Model for Client
The following steps are used to maintain the trust and to access

services of system by a client. Fig. 1 shows CTES model for

clients.

3.2.1 Joining of a client

Fig 2: Joining of a client

If a new client has to register itself to SuperHost to be a part of the

distributed system it has to pass certain criteria. Only registered

client can request for the services in the distributed system as a

trustworthy system. Registration process has certain steps (fig. 2).

1. Client  SuperHost
Client requests the SuperHost for registration by giving its

identity and capability list. Capability list includes the list of

resources and basic services owned by the node. SuperHost

recognizes him as a client.

2. SuperHost  Client
SuperHost displays an agreement for the registration to the client

which means that each client has to follow the rules and policies

mentioned in the agreement. For this SuperHost demands the

capability list of the client.

3. Client  SuperHost
Client provides capability list to SuperHost. The capability list

contains a list of objects to which the process has right to access.

In the proposed model, it consists of available resources and basic

services that client holds.

4. SuperHost  Client
At the end of this process, SuperHost stores the reference and

details of new client for the use by itself and other nodes of the

system administration. SuperHost also provides a client_id to the

client for its authentication. This client_id is the result of a

crypto-based function (generally user defined).

3.2.2 Service request by a Client
Client can access the services of the distributed system in two

steps to authenticate it and then to get the reference of service

providers.

Step I: Authentication by KDC

1. Client  AS

The Client requests AS with its Client_id for TGT (Ticket

Granting Ticket).

2. AS  Client
The AS checks to existence of the client from SuperHost. If it is,

the AS returns a session key (for the communication from client

to TGS) in encrypted form using the password of the client and

Ticket-Granting Ticket which includes the Client_id, client

network address, ticket validity period and client/TGS session key

in encrypted form using the secret key of the TGS.

Fig 3: Service request by a client using Kerberos

3. Client  TGS
After receiving the reply from the AS, client decrypts the session

key with its password. Here client sends the TGT to TGS.

4. TGS  Client
TGS decrypts the message with its own secret key and returns the

reference of Agent system with a session key to access the

service.

Step II: Request for references of servers to Agent

Case 1: (Service provided by server)

Fig 4(a): Request serviced by Server

1. Client  Agent
In the first step of this process, client makes a request to agent for

some service with client_id and a valid session-id for

authentication.

2. Agent  Client
Agent searches the requested service in its database and if it finds,

it checks the load status of the server. Agent provides the

reference according to the load status of servers, that is, under-

loaded to client.

3. Client  Server
After receiving a list of servers for the requested service, client is

free to make a new request to any of the server. Client sends

client_id and service name in request message to destined server.

4. Server  Client

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 26

121

As server receives a request from any of the clients, it updates its

load and also sends a load update message to Agent. Server

provides service to the client and charges for the service.

Case 2: (Service provided by Agent)

1. Client  Agent
Client makes a request to agent for service with client_id and a

valid session-id for authentication.

2. Agent  Client
Agent searches the requested service in its database and if it finds,

it checks the load status of the service provider (which can service

the requested service). In the case when agent does not find a

single server (due to overload or unavailability of service), agent

itself serves the service to the client, if it has any. In this case,

agent itself will charge for the service.

Fig 4(b): Request serviced by Agent system

3.2.3 Leaving of Client
In the proposed CTES model, a client can make an explicit

request to SuperHost to unregister it or SuperHost can itself

destroy the membership of client if it finds that the client has not

been in touch for a long period of time.

3.3 CTES Model for Server

3.3.1 Joining of a Server
Joining of a server involves various steps.

Fig 6: Joining of a new Server

1. New Server  SuperHost
When a node wants to be a server in the distributed system it

makes a request by sending its client_id to SuperHost. SuperHost

authenticates it by verifying valid client_id and accepts the

request.

2. Superhost New Server
In the next step, superhost shows a service level agreement (SLA).

SLA, here, includes basic service and resources that server can

provide, the duration for which services would be available, the

number of users (clients) that can be served simultaneously by

server, specific performance benchmarks to which actual

performance will be periodically compared and response time. It

specifies the level of availability, serviceability, performance,

operation and other attributes.

3. New Server  Superhost
New server provides values to all these metrics of SLA.

4. Superhost  New server

As the result of this process, superhost maintains the record of the

server for further reference and provides a server id to new server.

New server can use this server_id to authenticate itself at the time

of registering services.

3.3.2 Registering Services with Agent by New Server

Phase I (Fig. 7(a)):
In this phase a new server registers its first service with agent.

Fig 7(a): Service registration by new Server

1. New server  Agent
A server publishes it services with Agent by making a request that

includes server_id.

2. Agent  New server
Agent demands details about the services from the new server.

3. New server  Agent
New server provides all the required details to agent to register a

new service.

4. Agent  New Server
 Agent maintains a record of the service registry provides service

id to new server.

Phase II (Fig. 7(b)):
This phase is considered to enhance the performance of the agent.

Fig 7(b): Service registration by old server

1. Server Agent
If a server which has registered at least one service with agent

wants more service to register, it can directly call addService

procedure of agent using existing service_id as a proof that it has

already registered at least one service with the agent. Details of

new services are also sent to agent.

2. Agent  Server
The called procedure will return a sequenced service id to the

server as a result of new services registration phase. Server also

stores this service id with service details in its record. This

procedure can be used by an existing server 'n' number of times.

3.3.3 Request for service by Server
A server can itself require some services. In order to access the

services, it can behave like a client in distributed system and make

request to agent with its client_id only.

3.3.4 Leaving of Server
In the proposed CTES model, server can make an explicit request

to superhost to unregister it or superhost can itself distroy the

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 26

122

membership of server if it finds that server has not been updated

or modified its services for a long period of time.

4. CONCLUSION AND FUTURE WORK
This paper makes an attempt to build a trustworthy system using

Kerberos extended by trust and its requirement in the distributed

system. For this both authorization and authentication aspects are

considered. The proposed approach provides a promising solution

with trust policies as authorization semantics. A Reactive agent

system is proposed in order to balance the load of systems and to

maintain the list of services and servers. Distributing the

authentication workload in an efficient manner enhances the

overall performance of the system. In order to prevent the system

from malicious nodes and their activities, the life time of client

and server nodes is monitored by a central coordinator. Our

model is scalable enough, means that system can easily be altered

to accommodate the changes in the number of users, resources

and computing entities. The proposed CTES model provides

strong expandability and capability of mutual communication in a

secure fashion. Our proposed CTES model can also be

implemented for heterogeneous systems.

We are now implementing CTES model so as to evaluate the

performance of overall system. In future, we shall deploy CTES

model with web services on large scale.

Fig 1: CTES model for Client

Fig 5: CTES model for Server

5. REFERENCES
[1] Ming He, Aiqun Hu and Hangping Qiu, “ Research on secure

key techniques of trustworthy distributed systems”, in

International Conference on Computer Engineering and

Technology, 2009.

[2] Ming He, Aiqun Hu and Hangping Qiu, “Research on

behaviour trust based on trustworthy distributed system”, in

International Conference on Networks Security, Wireless

Communications and Trusted Computing, 2009.

[3] Peter C. Chapin, Christian Skalka and X. Sean Wang,

“Authorization in trust management: features and

foundations”, in ACM Computing Surveys, August 2008.

[4] Ping Liu, Rui Zong and Sizuo Liu, “A new model for

Authentication and Authorization across Heterogeneous

©2010 International Journal of Computer Applications (0975 - 8887)

Volume 1 – No. 26

123

Trust-Domain” in International Conference on Computer and

Software Engineering, 2008.

[5] Tomoya Enokido and Makoto Takizawa, “Role based access

control in Distributed Object Systems”, in International

Conference on Distributed Computing Systems Workshps,

2008.

[6] Phillip L. Hellewell, Timothy W. van der Horst and Kent E.

Seamons, “Extensible Pre-authentication in Kerberos”, in

Annual Computer Security Applications Conference, 2007.

[7] Hedi Hamdi, Mohamed Mosbah and Adel Bouhoula,

“Domain specific language for securing distributed systems”,

in Second International Conference on Systems and

Networks Communications, 2007.

[8] Huaizhi Li, Mukesh Singhal, "Trust Management in

Distributed Systems,", in Computer, vol. 40, no. 2, pp. 45-53,

2007.

[9] Serhiy Skakun and Nataliya Kussul, “An agent approach for

providing security in distributed systems”, TCSET’ 2006.

[10] Ching Lin and Vijay Varadharajan, “Trust based risk

management for distributed system security- a new

approach”, in Proceedings of the First International

Conference on Availability, Reliability and Security, 2006.

[11] Jaeger, T., McDaniel, P., St. Clair, L., Cáceres, R., and

Sailer, “Shame on trust in distributed systems”, in

Proceedings of the 1st USENIX Workshop on Hot Topics in

Security (Vancouver, B.C., Canada). USENIX Association,

Berkeley, CA, 4-4, 2006.

[12] C.Neuman, T. Yu, S.Hartman, and K. Raeburn. RFC 4120:

The Kerberos Network Authentication Service (V5), Jul

2005.

[13] Wen Tei-hua, Gu Shi-wem, “An improved method of

enhancing Kerberos protocol security”, Journal of China

Institute of Communications, Vol 25 No. 6. June 2004, pp.

76-79.

[14] Matt Blaze, Joan Feigenbaum, John Ioannidis and Angelos

D. Keromytis, “ The role of trust management in distributed

systems security”, in Secure internet Programming: Security

Issues For Mobile and Distributed Objects, J. Vitek and C. D.

Jensen, Eds. Lecture Notes In Computer Science. Springer-

Verlag, London, 185-21, 2001.

[15] Fred B. Schneider, Steven M. Bellovin and Alan S. Inouye,

“Building trustworthy systems: Lessons from the PTN and

Internet”, IEEE Internet Computing, November- December

1999.

[16] Marvin A.Sirbu and John Chung-I Chuang, “ Distributed

authentication in Kerberos using public key cryptography”,

in sndss, pp.134, 1997 Symposium on Network and

Distributed System Security, 1997.

[17] Nicholas Yialelis, Emil Lupu and Morris Sloman, “Role-

based security for distributed Object Systems”, in

Proceedings of WET ICE, IEEE, 1996.

[18] B.Clifford Neuman and Theodore Ts’o, “Kerberos: an

authentication service for computer networks”, in IEEE

Communications Magazine, 1994.

[19] Neuman C. RFC 1510, “The Kerberos network

authentication service (V5)”, [S]. 1993.

