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ABSTRACT 
The activity patterns in functional Magnetic Resonance 

Imaging (fMRI) data are unique and located in specific 

location in the brain. The main aim of analyzing these datasets 

is to localize the areas of the brain that have been activated by 

a predefined stimulus [1]. The basic analysis involves 

carrying out a statistical test for activation at thousands of 

locations in the brain. The analysis is based on fMRI brain 

activation maps generated using the Statistical Parametric 

Mapping (SPM) approach. The use of individually generated 

activation maps with SPM allows for better scalability to very 
large subject pools and it has the potential to integrate data at 

the activation map level that would be technically difficult to 

combine at the raw data level. 

The fMRI data is huge, dimensionally dissimilar for different 

orientation data and also show a lot of variation in the data 

acquired for different subjects for similar activities. The 

variations are so obvious that there are variations in the data 

of same subject for different trails. In this context we have 

explored the possibility of different Pattern Recognition 

Technique on same data to choose the best option. The 

comparison of classification efficiency of two methods 
implemented: The Back Propagation Neural Network 

Technique and The Naïve Bayesian Technique show that the 

two are efficient in classification of the fMRI Patterns under 

different contexts.  
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1. INTRODUCTION  
Pattern classification for fMRI is to automatically identify 

different patterns in distributed neural substrates resulting 

from motor and cognitive (memory related) tasks [2]. Pattern 

classification of fMRI activity maps is challenging area of 

research due to multiple reasons. First it involves analysis of 
huge dataset representing each voxel of the brain 3D data in 

three orientations of the brain. The dimensionality mismatch 

of the data due to uneven anatomical structure of the brain 

forms the second problem. This is because most of the pattern 

classification methods use similar dimension datasets for 

classification. Third challenging area is  
 

normalization technique for addressing the varied types of 

activity maps resulting from different acquisition technique. 

We need to generalize the analysis process of extracted 

activity maps which is independent of acquisition protocol.  

These limitations form the motivation for the research  

 

 

 

 

proposal on efficient fMRI data analysis methods which help 
in classification and recognition of activity maps rendered for 

different predefined tasks.We need to generalize the analysis 

process of extracted activity maps which is independent of 

acquisition protocol.  These limitations form the motivation 

for the research proposal on efficient fMRI data analysis 

methods which help in classification and recognition of 

activity maps rendered for different predefined tasks. The 

limitations of the fMRI data sets are to be addressed to evolve 

methodologies for efficient classification and recognition of 

fMRI activity maps.  

First the high dimensionality of fMRI data and dimensionality 
mismatch of data in three orientations (Axial, Sagittal and 

coronal) pose a main drawback for application of traditional 

classification algorithms: The brain data is usually acquired in 

three orientations. The data in each orientation is three 

dimensional i.e., multiple image slices of the brain are 

considered for all three orientation. This results in huge data. 

Because of the anatomical structure of the brain, the number 

of slices in each orientation varies. There will therefore be 

different slice numbers for different orientations. The 

motivation for research is therefore to modify the existing 

classification algorithms to adapt to the huge size and also to 

the varying dimensions of the fMRI data. 
The second limitation is the small number of available data 

sets. The pattern classification can be performed with 

reference to the normal subject data. To arrive at a normal 

subject template multiple data sets of subjects with varying 

age and different habitat, which precisely means inter 

individual differences are to be considered. The availability of 
fMRI datasets of normal subjects is very sparse. With limited 

datasets the efficiency of classification of any algorithm will 

not be rightfully justified. This calls for incorporation of 

methods which can effectively depict the efficiency of 

classification even with few datasets. 

The third challenging limitation is the fMRI image 

dependence on the acquisition methodology. The fMRI data is 

basically a statistical dataset defining the time courses of the 

appearance of the activity patterns. Several software tools are 

available like SPM, MRICRO, AFNI etc., which can 

transform the statistical data to make them appear as color 
blobs on the gray image of the brain. Each method is different 

from another and need extensive understanding of the tool to 

perform activity overlay. The activity maps for any predefined 

task are the same irrespective of the tools used. The 

motivation for research therefore is to find a method of 

considering only the activity maps and not the statistics.  

The fMRI data is acquired through experimentation 

performed on nine different normal subjects performing 

different predefined tasks. We have considered three tasks: 

The motor task (Fig-1) involving movement of the left thumb.
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Fig-1: The axial slices of the brain with motor activity representation

The experimentation involves the movement of the left thumb 

during the active phase and no activity during the rest phase. 

The subject is cautioned about not touching the palm with the 

thumb which in any case would result in inclusion of touch 

activity to the intended thumb movement motor activity. The 

resulting images obtained with the aid of SPM show the 
activity maps on the prefrontal area of the right hemisphere of 

the brain. This specifically indicates the upper left limb motor 

activity. 

The second experimentation involves vision task (Fig-2) 

where visualization of a checker board is considered. The 

subjects are made to view a checkerboard during the active 

phase and the checkerboard is removed during the rest phase. 

During the rest phase they view an empty white wall. Vision 

is bilateral and so the activity maps as rendered from SPM 
exist in the occipital region on either hemisphere of the brain.

  
Fig-2: The axial slices of the brain with Vision activity representation

The third task considered for experimentation is the Visio-
memory task (Fig-3) where visualization of scenes and 

memorizing the same is considered. In this case the subject is 

made to view certain predefined number of random scenes 

during the encode phase. During the retrieve phase the scenes 

are randomly mixed with some more scenes and are presented 

to the subject. The subject has to recognize the scenes shown 
during the encode phase. The results show activity in occipital 

region indicating the involvement of vision activity and also 

in the parietal region indicating the involvement of memory 

during retrieval phase.

 
Fig-3: The Sagittal slices of the brain with visio-memory activity representation

It has become widely acknowledged that successful 

applications of neural computing require a principled, rather 

than unplanned, approach. The classification in our proposal 

is therefore based on back propagation neural networks which 

can effectively classify huge datasets and also consider data 

with unequal dimensions. 

2. BACK PROPAGATION NEURAL NETWORK 

FOR CLASSIFICATION  

The traditional fMRI classification methods are applied on 

individual subjects. It is observed that the activity patterns 

vary from person to person [3]. This characteristic of fMRI 

data instantiates the need for methods which consider groups 

of subjects rather than individual subject’s data for 

classification. It would give a general perspective to the 

classification algorithm. This has motivated us to propose an 

approach to improve multiclass classification across groups of 

subjects. Spatially normalized activation maps of cluster of 

subjects are segmented into functional areas using a 

neuroanatomical atlas. Then each map is classified separately 
using local classifiers.  

Standard back propagation is a gradient descent algorithm, 

similar to the Widrow-Hoff learning rule, in which the 

network weights are moved along the negative of the gradient 

of the performance function. The term back propagation 

refers to the manner in which the gradient is computed for 

nonlinear multilayer networks. Properly trained back 

propagation networks tend to give reasonable answers when 

presented with inputs that they have never trained with. 

Typically, a new input leads to an output similar to the correct 
output for input vectors used in training that are similar to the 

new input being presented. This generalization property 

makes it possible to train a network on a representative set of 

input/target pairs and get good results without training the 

network on all possible input/output pairs.  
The fMRI data set is huge and also the data size for different 

tasks is dimensionally dissimilar. The traditional back 

propagation algorithm is therefore aptly modified by 

presenting the dataset in the form of principal components. 

The principal component analysis is a method used for 

dimensionality reduction and feature dataset  

dimension mismatch [4]. Dimensionality reduction of high 

dimensional data is useful for three general reasons; it reduces 

computational requirements for subsequent operations on the 

data, eliminates redundancies in the data, and, in cases where 
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the feature data set dimensionality doesn’t match then a 

common dimension is to be arrived at with the available data. 

All three reasons apply for the fMRI data representing the 

depth where it is found that the depth values vary 

considerably for three orientations (Table-1) (Axial, Sagittal 

and Coronal) of the brain images. 
The total number of brain slices which have the activity 

patterns in them or the volume of brain involved in any 

activity is referred to as the depth feature. The depth 

information is represented in the form of brain slice numbers. 

The slice numbers are assigned with reference to the brain iso-

center. The slices are acquired at an interval of 2mm depth.  

 

 

 

 
 

 

 

             Axial           Sagittal       Coronal 

Sub 1 -34mm 8mm -40mm 46mm 44mm -100mm 

Sub 2 -32mm 10mm -42mm 48mm 42mm -102mm 

Sub 3 -34mm 8mm -40mm 46mm 44mm -98mm 

Sub 4 -36mm 8mm -46mm 46mm 40mm -102mm 

Sub 5 -32mm 8mm -44mm 48mm 42mm -102mm 

Sub 6 -36mm 10mm -44mm 48mm 34mm -100mm 

Sub 7 -34mm 12mm -42mm 46mm 34mm -100mm 

Sub 8 -34mm 12mm -42mm 46mm 44mm -100mm 

Sub 9 -32mm 8mm -42mm 46mm 42mm -102mm 

 

 

Table-1: The raw fMRI data representing the depth information of the activity pattern in the brain images 

when imaged in three orientations 

 

The depth values give the extent of existence of activity 
patterns in each direction. The axial slices involved in the 

activity in the typical case considered (from table-1) are found 

as 24 slices.  The total numbers of slices of the brain that are 

responsible for the specified activity in the sagittal direction 

are 47 slices. The activity pattern when  

imaged in the coronal direction is found in 71 slices. The 
noticeable variations in the dimensions of the raw fMRI depth 

data motivates us to include the use of Principal Component 

Analysis (PCA), a standard method for creating uncorrelated 

variables from best-fitting linear combinations of the variables 

in the raw data (Table-2).
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Table-2: The 3 principal components representing the fMRI data set of the brain imaged in all three 

orientations

1.1 Performance Evaluation with 

multiple component consideration 

The decision on the number of components is heuristic. The 

graph (Fig-4) shows the classification errors while 

Motor-axial  Motor-Sagittal  Motor-coronal 

Subject1 0.8143 -0.571 0.1067  

0.999

5 -0.033 -4E-09  

0.884

9 0.4318 -0.174 

Subject2 0.7288 0.6116 -0.308  
0.999

5 -0.033 -4E-09  -0.46 0.8644 0.2037 

Subject3 0.74 0.5995 -0.305  

0.999

5 -0.033 -4E-09  

0.800

5 -0.202 0.5641 

Subject4 0.8143 -0.571 0.1067  

0.999

5 -0.033 5E-09  

0.884

9 0.4318 -0.174 

Subject5 0.3265 0.8015 0.5009  

0.132

9 0.9911 -8E-09  -0.46 0.8644 0.2037 

Subject6 0.7288 0.6116 -0.308  0.033 0.9995 -3E-09  

0.800

5 -0.202 0.5641 

Subject7 0.8143 -0.571 0.1067  
0.999

5 -0.033 -1E-09  -0.46 0.8644 0.2037 

Subject8 0.3265 0.8015 0.5009  0.033 0.9995 1E-08  

0.884

9 0.4318 -0.174 

Subject9 0.8143 -0.571 0.1067  

0.999

5 -0.033 9E-09  

0.892

5 0.4143 -0.178 

Vision-Axial  Vision-Sagittal  Vision-Coronal 

Subject1 0.9829 0.0732 -0.138  

0.954

1 0.2759 0.1065  

0.993

3 -0.114 0.015 

Subject2 0.9691 -0.238 0.0588  
0.954

1 0.2759 0.1065  
0.993

3 -0.114 0.015 

Subject3 0.9701 0.1965 -0.051  

0.986

8 -0.06 -0.111  0.996 -0.087 0.0218 

Subject4 0.9571 -0.284 0.0451  

0.974

9 -0.184 -0.009  0.996 -0.087 0.0218 

Subject5 0.9824 -0.071 -0.042  

0.988

7 -0.047 -0.104  

0.990

2 0.0702 -0.121 

Subject6 0.9713 0.2048 -0.028  

0.978

3 -0.168 -0.005  0.996 -0.087 0.0218 

Subject7 0.9829 0.0732 -0.138  
0.985

1 0.0866 -0.09  
0.990

2 0.0702 -0.121 

Subject8 0.9691 -0.238 0.0588  

0.984

3 0.0792 -0.098  

0.981

5 0.1768 0.0737 

Subject9 0.9189 0.2918 0.2525  

0.932

7 -0.257 0.2222  

0.981

5 0.1768 0.0737 

Visio-memory-Axial  Visio-memory-Sagittal   Visio-memory-Coronal 

Subject1 0.9965 -0.058 -0.058  

0.983

3 -0.14 -0.047  

0.962

3 0.2235 0.1159 

Subject2 0.9925 -0.097 -0.073  

0.983

1 -0.136 -0.053  

0.979

6 -0.052 -0.15 

Subject3 0.9965 -0.058 -0.058  

0.979

1 -0.032 -0.156  

0.960

5 0.0553 0.2711 

Subject4 0.9949 0.0507 -0.027  

0.976

5 -0.021 -0.173  

0.976

7 -0.214 0.0161 

Subject5 0.9884 -0.129 0.0799  

0.960

4 -0.194 0.1386  

0.976

7 -0.214 0.0161 

Subject6 0.9898 0.1402 0.0194  

0.868

3 0.4925 0.057  

0.976

7 -0.214 0.0161 

Subject7 0.9898 0.1402 0.0194  

0.868

3 0.4925 0.057  

0.984

6 0.1384 -0.092 

Subject8 0.9898 0.1402 0.0194  0.929 -0.228 0.2591  

0.984

6 0.1384 -0.092 

Subject9 0.9884 -0.129 0.0799  

0.983

1 -0.136 -0.053  

0.984

6 0.1384 -0.092 
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incorporating three, five and seven principal components for 

classification. 

The graph indicates that the classification error is less for five 

components as compared to three components. The change in 

error values for five and seven components is very minimal. 

We therefore fix the number of principal components to seven 
for creating the template for recognition/classification. 

The back propagation neural network is a multilayer network 

that comprises of input, hidden and output layers [5][6]. The 

number of nodes in the input layer is equal to the number of 

features used for class representation. The number of nodes in 

the output layer is equal to the number of classes needed. The 

number of nodes in the hidden layer mainly decides the 
refinement to the inputs such that the output goal is reached in 

shortest duration of training period.

 

Motor activity
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Fig-4: Graphical representation of classification error for 3, 5 and 7 principal components. 

 

We therefore verify the time lapsed in training session for 
multiple number of hidden layer nodes for the outputs to reach 

a value that is nearest to the predefined target output by a 

factor of 0.1. The results indicate that (Table -4 (a), (b) ) 

((Fig-5)   (Fig-6)) the performance goal is reached when the 

number of hidden layer nodes is 25 and the number of epochs 
is 4500 in the shortest duration of time. Decrease `in the value 

of both hidden layer nodes and epochs results in under 

training and more number in over training.

 

 
 

 

Table–4: (a) The Performance goal values for different number of hidden layer nodes and (b) The Training 

time Periods for different epochs and number of hidden layers 

 

 

Hidden 
layer 
nodes 10 15 20 25 30 35 

Epochs Performance 

500 0.53 0.42 0.34 0.35 0.36 0.27 

1000 0.36 0.35 0.29 0.31 0.48 0.22 

1500 0.32 0.34 0.28 0.29 0.41 0.51 

2000 0.22 0.22 0.25 0.25 0.53 0.31 

2500 0.21 0.2 0.24 0.16 0.23 0.31 

3000 0.16 0.19 0.22 0.12 0.2 0.25 

3500 0.12 0.15 0.13 0.15 0.18 0.19 

4000 0.16 0.14 0.15 0.13 0.17 0.14 

4500 0.15 0.14 0.17 0.099 0.11 0.16 

5000 0.13 0.11 0.099 0.099 0.099 0.11 

5500 0.11 0.099 0.099 0.099 0.099 0.099 

6000 0.099 0.099 0.099 0.099 0.099 0.099 

Hidden 
layer 
nodes 10 15 20 25 30 35 

Epochs Training Time Elapsed (Secs) 

500 1.22 1.43 1.3 1.3 1.3 1.5 

1000 2.39 2.4 2.4 2.6 2.54 2.65 

1500 3.6 3.57 3.6 3.6 3.9 3.9 

2000 4.75 4.73 4.7 5 5.06 5.4 

2500 5.9 6.25 6.05 6.3 6.4 6.7 

3000 6.9 7.5 7.6 7.9 7.7 8.01 

3500 8.5 8.2 9.03 9.3 9.7 9.2 

4000 9.48 9.2 6.4 10.35 10.2 10.48 

4500 10.9 11.2 11.6 10.42 11.7 11.8 

5000 10.62 12.5 12.3 12.12 12.5 13.4 

5500 12.2 13.7 12.7 13.87 13.7 14.12 

6000 13.5 14.6 12.64 14.5 14.8 14.5 
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    Fig-5:The training Performance graph            Fig-6: The training time lapse graph 

1.2 Classification efficiency evaluation

The traditional method of leaving-one-out technique is used 
for performance evaluation of training methodology. In this 

method, one of the available samples is excluded, the 

classifier is designed with the remaining samples, and then the 

classifier is applied to the excluded sample [7]. This 

procedure is repeated with each available sample: if N 

training samples are available, N classifiers are designed and 

tested. The training and test sets for any one classifier so 
designed and tested are independent. This method is mainly 

effective in case of unavailability of large dataset for training 

which is true in the case of fMRI dataset. The classification 

efficiency is then checked by plotting the results on the 

Receiver Operating Characteristics (ROC) [8]. 

 

 Table-6: The classification efficiency indicative values 

 

 
 

A B C 

   

TPR = 0.953 TPR = 0.906 TPR = 0.937 

FPR = 0.063 FPR = 0.1875 FPR = 0.078 

ACC = 0.95 ACC = 0.86 ACC = 0.93 
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Fig-7: The ROC space indicating the classification efficiency

The classification efficiency with Back propagation algorithm 

where the features are represented with principal components 

is exceptionally good. This justifies the use of principal 

components for feature representation. But the fMRI data is 

more vulnerable to variations from subject to subject and 
stimulus to stimulus. The statistical methods have always 

proved effective while handling uncertain features sets. The 

classification is therefore checked with statistical method 

which is more appropriate in classification of traditionally 

fluctuating fMRI data. 

2. STATISTICAL METHOD  FOR 

CLASSIFICATION 

Among the various frameworks in which pattern recognition 

has been traditionally formulated, the statistical approach with 
Bayesian probabilistic approach for classification has been 

most intensively studied and used in practice [9]. The 

Bayesian classification is based on the conditional 

dependency of the features of different classes. The fMRI 

dataset in three orientations are three independent identities 

which are not dependent on each other but the activity is seen 

as a combined effect of the three datasets. 

The traditional method of Bayesian classification cannot 

therefore be considered for fMRI activity pattern 

classification. The conditionally independent characteristic of 

the naïve Bayesian classifier which is an improvised version 

of the Bayesian algorithm is suitably employed in this 
application. The probability of existence of activity in the 

image considered in all the three orientations of brain imaging 

is considered. The combined probability is obtained through 

naïve Bayesian approach for each type of task performed [10]. 

2.1 Naïve Bayesian approach 

The Traditional statistical classification is based on the 

probabilistic approach. Abstractly, the probability model for a 
classifier is a conditional model,  

  P(C|F1,…….,Fn) 

over a dependent class variable C with a small number of 

outcomes or classes, conditional on several feature variables 

F1 through Fn. The problem is that if the number of features n 

is large or when a feature can take on a large number of 
values, then basing such a model on probability tables is 

infeasible. The model is therefore reformulated to make it 

more tractable. 

Using Bayesian theorem,   

P(C|F1,…….,Fn) =    p (C) p(F1,…….,Fn |C) 

              ________________________ 

    p (F1,…….,Fn) 

In practice only the numerator of this fraction is of interest, 

since the denominator is independent of C and the values of 
the features Fi are given, so that the denominator is effectively 

constant. The numerator is equivalent to the joint probability 

model, 

  P(C,F1,…….,Fn)  which can be rewritten 

as follows, using repeated applications of the definition of 

conditional probability: 

P(C|F1,…,Fn)  = p(C)p(F1|C)p(F2,……,Fn|C,F1)  

= p(C)p(F1|C)p(F2|C,F1)p(F3,……,Fn|C,F1,F2)     

=p(C)p(F1|C)p(F2|C,F1)p(F3|C,F1,F2)p(F4,……,Fn|C,F1,F2,F3)   

and so forth.  

The "naive" conditional independence assumptions are now 

considered: assume that each feature Fi is conditionally 
independent of every other feature Fj for j ≠ i. This means that  

p(Fi|C,Fj) = p(Fi|C) and so the joint model can be expressed 

as, 

p(C,F1,……..,Fn)=p(C)p(F1|C)p(F2|C)p(F3|C)………        = 

p(C) ∏ n 
i=1 p(Fi/C)  

This means that under the above independence assumptions, 
the conditional distribution over the class variable C can be 

expressed as: 

p(C,F1,……..,Fn) =  p(C) ∏ n 
i=1 p(Fi/C)  

where Z is a scaling factor dependent only on Fi1,…….Fin, 

i.e., a constant if the values of the feature variables are known. 
In our application the three classes considered represent three 

separate activities. The probability of each class is assumed to 

be the same and therefore. 

 P(V) = P(M) = P(VM) = 0.33 

Where, P(V), P(M) and P(VM) represent the probabilities of 

vision, motor and visio-memory activities respectively.  
The conditional probabilities of each class for features 

extracted in Axial direction [P(A/V), P(A/M), P(A/VM)], 

Sagittal direction [P(S/V),P(S/M),P(A/VM)] and Coronal 

direction [P(C/V), P(C/M), P(C/VM) are considered along 

with the class probabilities to generate the individual 

probability values  

The probability values form the basis for classification. A new 

pattern when presented will be classified based on the 

standard decision rules. The most common decision rule used 

in statistical models is the Maximum A Posteriori (MAP) rule. 
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2.2 The MAP rule for classification 

To construct a classifier from the probability model we 

consider the probabilistic approach of classification which is 

derived from the independent feature model, that is, the naive 

Bayesian probability model. The naive Bayesian classifier 

combines this model with a decision rule. One common rule is 

to pick the hypothesis that is most probable; this is known as 

the MAP decision rule [26]. The corresponding classifier is 
the function classify defined as follows:  

Classify (f1,…….., fn) = argmaxc P(C=c) ∏ n 
i=1 p(Fi = fi)/C = 

c)  

The probability of the test pattern is calculated in the same 

manner as the calculations done for training patterns to 

compare with the probability values that are arrived at by the 

training patterns. The MAP decision rule is then applied to 

arrive at a conclusion about the pattern represented by the test 

pattern. The efficiency of the classifier is tested through leave-

one-out technique. The leave-one-out technique provides the 

least-biased (practically unbiased) estimate of the 

classification accuracy of a given training set, and is useful 

when the number of samples available with known 

classification is small. 

2.3 Classification efficiency evaluation 

The classification efficiency of the classifier is evaluated 
using the leaving-one-out technique as discussed in the 

previous method and the results are checked (Table-8). The 

ROC curve (Fig-8) is indicative of the classification efficiency 

of the three classes. This mainly depends on where the 

intersecting point of sensitivity and specificity lies in the 

graph with reference to the line of discrimination.

Table-8: The classification efficiency indicative values 

A B C 

 
  

TPR = 0.938 TPR = 0.75 TPR = 0.91 

FPR = 0.078 FPR = 0.34 FPR = 0.11 

ACC = 0.92 ACC = 0.703 ACC = 0.898 

 

Fig-8: The ROC space indicating the classification efficiency

The efficiency table and the graph clearly represent the good 

efficiency in classification for motor task because it is a non 

bilateral task and there are very minimal possibilities of any 

interference from other regions in the brain. The visio-

memory task involves both bilateral vision task and also the 

non bilateral memory task. A little decrease in efficiency may 

be accounted for the existence of the bilateral vision task 

which involves two prime activities but it is relatively 

compensated by the stable non bilateral memory task. The 

efficiency of the vision task has more deviations and is less 
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efficient in few cases. This is mainly because vision task is 

bilateral and the chance of erroneous classification can be 

accounted for the existence of two prime activities. 

 

3. RESULTS AND ANALYSIS 
 

The classification is performed with two distinct 

methodologies. The methodologies are considered with 

reference to the prime characteristics of the fMRI data. The 

huge size of the fMRI data is taken into account in back 

propagation algorithm which is the most efficient of all the 

neural networks when huge data is to be classified. The fMRI 
data varies for the same subject and also for a repeated 

attempt of execution of same task. These variations prompt us 

to consider probabilistic approaches for classification. The 

Naïve Bayesian method caters to the conditionally 

independent characteristic of the fMRI data. 

The results of classification are compared for the two 
methodologies. The efficiency values indicated by the ROC 

plot clearly indicate that the classification efficiency of the 

back propagation algorithm is better as compared to the naïve 

Bayesian technique. This is mainly because the data for back 

propagation network are the principal components which are 
known to represent any data in a very efficient way. The 

classification efficiency of the vision activity which is low as 

compared to the rest of the values is mainly because of its 

bilateral characteristic. This deficiency is also overcome in 

back propagation techniques because of the representation of 

the data through principal components. 
 

4. CONCLUSION 
An attempt is made towards implementation of a technique 

for classifying spatial patterns in brain activation maps. Our 

method consists of selecting appropriate activation maps 

obtained through SPM in all the three brain imaging 

orientations. Reduce the dimensionality of depth values using 
PCA, and creating a classifier using back propagation neural 

network and develop a training set of labeled activation maps. 

An attempt is made towards implementing different number 

of principal components. In accordance with the classification 

error that the network arrives at, an appropriate number of 

components is selected. The classification procedure is tested 
for three trained tasks and the classification with low error is 

achieved.  

As fMRI data has a low signal to noise ratio, activation 

patterns may not be completely consistent even across the 

healthy control subjects. The statistical approaches thus are a 

better alternative in classification. Also the characteristics of 
the fMRI data are that the data representing the depth are not 

dependent on each other in the three orientations but each 

contributes significantly and substantially in a combined 

fashion for defining any activity. The decision on application 

of naïve Bayesian probability technique which emphasizes the 

conditionally independent characteristics of the features 

defined for a specific event turns out to be an obvious option. 

The statistical data forms the basis for applying the naïve 

Bayesian probability technique to generate the probabilistic 

values for all the three events under consideration. The MAP 
rule is applied to classify the test pattern into one of the three 

classes. The efficiency of the same is checked through 

leaving-one-out technique and has given effective results 

which justify the choice.  

 

5. REFERENCES 
 

1. Kenneth A. Norman, et, al, "Beyond mind-reading: 

multi-voxel pattern analysis of fMRI data", TRENDS in 

Cognitive Sciences, vol 500, 2006. 

2. Heidi Johansen-Berg, et, al, "Correlation between motor 

improvements and altered fMRI activity after 

rehabilitative therapy", Brain, Vol 125, pp 2731-2742, 
2002. 

3. Helena Grip, et, al, "Classification of Neck Movement 

Patterns Related to Whiplash-Associated Disorders 

Using Neural Networks", IEEE Transactions on 

Information Technology in Biomedicine, vol. 7, no. 4, pp 

412-418, December 2003. 

4. H N Suma, S Murali “Principal component analysis for 

Analysis and Classification of fMRI Activation Maps”, 

International journal of computer science and network 

security, VOL 7, No 11, 235-242, Nov 2007. 

5. Insung Jung, et, al, "Pattern Classification of Back-

Propagation Algorithm Using Exclusive Connecting 
Network", International Journal of Computer Science 

and Engineering, Vol 2; pp 76-80,2008. 

6. H N Suma, Murali S, “Neural network approach towards 

pattern classification using fMRI activity maps”, 

proceedings of IEEE indexed International Conference 

on computer communication Engineering-ICCCE08, pp 

288-292, Kuala lampur, Malaysia, 2008. 

7. Francisco Azuaje, "Genomic data sampling and its effect 

on classification performance assessment", BMC 

Bioinformatics, Vol 4:5, 2003. 

8. Seong Ho Park, et, al, "Receiver Operating Characteristic 

(ROC) Curve: Practical Review for Radiologists", 

Korean Journal of Radiology, Vol 5, pp 11-18, 2004. 

9. Saulius J. Garalevicius, "Memory–Prediction Framework 

for Pattern Recognition: Performance and Suitability of 

the Bayesian Model of Visual Cortex", American 

Association for Artificial Intelligence, 2007. 
10. H N Suma, Murali S, “Naïve Bayesian classification 

approach towards classification of fMRI activity maps”, 

proceedings of  International Conference on cognition 

and Recognition ICCR-08, pp 580-586, Mysore  2008.

 


