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ABSTRACT 
Mining frequent patterns in data is a useful requirement in 

several applications to guide future decisions. Association rule 

mining discovers interesting relationships among a large set of 

data items. Several association rule mining techniques exist, 

with the Apriori algorithm being common. Numerous 

algorithms have been proposed for efficient and fast 

association rule mining in data bases, but these seem to only 

look at the data as a set of transactions, each transaction being 

a collection of items. The performance of the association rule 

technique mainly depends on the generation of candidate sets. 

In this paper we present a modified Apriori algorithm for 

discovering frequent items in data sets that are classified into 

categories, assuming that a transaction involves maximum one 

item being picked up from each category. Our specialized 

algorithm takes less time for processing on classified data sets 

by optimizing candidate generation. More importantly, the 

proposed method can be used for a more efficient mining of 

relational data bases.  

 

Keywords:  
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frequent items, itemsets. 

 

1. Introduction 
Mining frequent patterns or trends in data is an 

interesting, useful and important requirement in several 

applications to guide future decisions. Association rule (AR) 

mining discovers interesting relationships among a large set of 

data items by finding all frequent itemsets. A very useful 

application is in Web services and e-Commerce, in areas like 

web site navigation analysis and online orders and sales 

transactions analysis, to know customer preferences and 

trends. There are several algorithms for association rule 

mining such as Apriori [4] and FP growth [13]. Here the input 

data is a collection of transactions, each transaction containing 

one or more items chosen from a warehouse of items, each 

item occurring once.  

Ever since AR mining was proposed for market 

survey in [1], it has been the subject of intense research, and 

has spawned several applications. One of the common and 

useful algorithms is the Apriori algorithm [4], and there have 

since been numerous algorithms and techniques suggested for 

its efficient and fast implementation to improve performance. 

Also, a lot of algorithms have also been proposed for its 

implementation in databases, as the database is regarded as a 

collection of transactions. One aspect that we found in the 

existing algorithms, while applying to databases, esp. 

relational, is that they treat each row (transaction) only as just 

a set of items. However, we feel that performance of the 

algorithm could be improved if we treat the data items as 

being classified into categories. In other words, we look upon  

 

a relational database as a set  

of rows, each row (tuple) is a transaction set of selected data 

items each coming from a different category (attribute), 

assuming a maximum of one item per category. Thus the 

database constitutes a classified data set. We have found that, 

when the existing Apriori algorithm is suitably modified to 

take into consideration this view of databases, a significant 

performance of the algorithm results. 

Apriori algorithm iteratively searches for frequent 

itemsets in the given transaction database. At each iteration, a 

new candidate set of itemsets is generated based on the output 

of the previous iteration. The performance of Apriori depends 

on several factors such as size of the input database, 

transaction size, and the operations of candidate sets 

generation and selection based on the count of minimum 

support of the generated candidate sets in the transaction 

database. The generation of candidate sets itself consists of 

two operations, viz., joining and pruning. The joining 

operation produces the candidate sets for the current iteration 

and the pruning operation reduces the size of the candidate 

sets based on prior knowledge. Both these operations are 

computational expensive. Techniques proposed to improve 

Apriori have concentrated on both algorithmic and 
implementation aspects. Most concentration has been on the 

phases of pruning, counting, partitioning the input data set, 

data structures used, storage and access, and reducing the 

number of passes over the input database. In this paper we 

present a modified Apriori algorithm for classified data sets 

that optimizes candidate generation by reducing the number of 

iterations in the joining phase, and also the number of 

candidate itemsets generated.  This specialised algorithm not 

only takes less time than the general version, but also yields a 

more efficient method of mining relational databases.  

 

2. Earlier work 
The problem of mining association rules was introduced by 

Agrawal, et al. in [1], who also brought out the Apriori 

algorithm [4] for market-based data. Subsequently, there have 

been many efficient and fast AR algorithms proposed, 

including improved Apriori implementations. Partitioning 

[18] was used to speed up Apriori in respect of I/O, while 

sampling [20] was adopted to reduce processing. Both these 

algorithms sought to achieve reduced number of passes over 

the input database.  An algorithm to improve pruning and 

counting in Apriori was suggested in [16]. A Hash-based 

algorithm for candidate set generation is suggested in [17]. 

Other fast and efficient methods were proposed in [3], [6], [7], 

[15], [19]. Techniques for mining large databases with 

performance are discussed in [2], [5], [8], [9], [11], [15]. 

Useful techniques for mining frequent sets are discussed in 

[10] and [14]. 
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3. Frequent items mining using Apriori 

algorithm 
There are several algorithms to find frequent patterns in data 

sets. One of the common and useful algorithms is the Apriori 

algorithm, whose pseudocode is given in Fig. 1 adapted from 

[12]. It uses prior knowledge of frequent itemset properties 

and employs an iterative approach using a level-wise search 

based on candidate generation. This technique is applied to a 

general data set of items. The input is a database of 

transactions containing items drawn from a set of items. Each 

transaction contains an itemset. The output of the algorithm is 

a set of itemsets that frequently occur in the input transactions 

[12]. 

There are several applications involving special cases of data 

sets that may include data items classified into categories, 

such as in a departmental store. Here a transaction involves 

picking up items from each category. Existing AR mining 

algorithms treat each transaction as a set of items, without 

regard to the classification. In this paper, we propose a 

modification of the Apriori algorithm to apply to such 

classified data sets, leading to faster results. We assume that at 

most one item is picked from each category. As explained 

earlier, this assumption is useful to apply our algorithm to 

relational databases.  

Let us illustrate our case with an example. Let us consider a 

small computer shop selling classified items as in Table 1. 

Table 2 shows a selection of these items under various 

categories that participate in a set of transactions for 

illustration. The items have been assigned unique IDs for use 

in the algorithms.  Table 3 shows a sample database 

containing transactions involving these items. 

We shall apply the standard Apriori algorithm given in Fig. 1 

to this transactional data D. Since the algorithm is a general 

one that treats all items in one pool, the transactional items are 

considered irrespective of their category. 

 

Table 1 – Sample  items on sale in a computer shop  

Category Items 

Computer Desktop, Laptop, Tablet 

Peripherals Printer, Scanner, All-in-one 

Software Antivirus, Games, Utility, Educational 

Accessories Media, UPS, Flash Drive, Modem, Speaker 

 

 

 

 

Algorithm: Apriori. Find frequent itemsets using an iterative 

level-wise approach based on candidate generation. 

Input: Database D of transactions; minimum support 

threshold, min_sup. 

Output: L, frequent itemsets in D. 

Method: 

 

1. L1= find_frequent_1-itemsets(D, min_sup); 

2. for (k = 2;Lk-1 ≠ Ø; k++) 

3. { 

4.       Ck = apriori_gen(Lk-1); 

5.       for each transaction t ∈D // scan D for counts 

6.       { 

7.               Ct = subset(Ck, t);  

8.               for each candidate c ∈  Ct 

9.               c.count++; 

10.       } 
11.       Lk = {c ∈  Ck| c.count ≥ min_sup);  

12. } 
13. return L = ∪ kLk; 

 

procedure apriori_gen (Lk-1) 

1. for each itemset l1 ∈  Lk-1 
2.      for each itemset l2 ∈  Lk-1 

3.            if (l1[1] = l2[1]) ^ (l1[2] = l2[2]) ^ …^ (l1[k-2] = l2[k-

2]) ^ (l1[k-1] < l2[k-1]) 

4.            then 

5.            { 

6.                   c = l1            l2;  // join step: generate 

candidates 

7.                   if has_infrequent_subset(c, Lk-1) then  

8.                         delete c;  // prune step: remove infrequent 

candidates 

9.                   else add c to Ck; 

10.            } 
11. return Ck; 

 

procedure has_infrequent_subset (c:candidate k-itemset; Lk -

1:frequent (k - 1) itemsets) 

1. for each (k - 1)-subset s of c 

2.       if s ∉  Lk-1 then return TRUE; 

3. return FALSE; 

 

procedure find_frequent_1-itemsets(D, min_sup) 

// Form C1, the candidate 1-itemset list from D, with 
the items uniquely listed in sorted order. 

1. C1 = {c ∈  D}; 

2. for each transaction t ∈  D // scan D for counts 

3. { 

4.       Ct = subset(C1, t); 

5.       for each candidate  c ∈  Ct 

6.               c.count++; 

7. } 

8. L1 = {c ∈  C1| c.count >= min_sup); 

return L1; 

Fig. 1. The Apriori Algorithm for mining and  

discovering frequent itemsets from data. 
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Table 2 – Items with unique IDs 

Category Items ItemID 

Computer Desktop I1 

 Laptop I2 

   

Peripherals Printer I3 

   

Software Games I4 

   

Accessories UPS I5 

 Flash Drive I6 
 

Table 3 – Transactional data for a Computer shop 

TID List if Item IDs 

T1 I1, I3, I5 

T2 I3, I5 

T3 I2, I3, I6 

T4 I1, I4, I6 

T5 I2, I6 

T6 I2, I3, I4, I6 

T7 I2, I4 

T8 I1, I3, I4, I5 

T9 I3, I6 
 

 

Applying the normal Apriori Algorithm given in Fig. 1 to the transactions in Table 3, we generate the candidate 

itemsets and frequent itemsets, where the minimum support count is assumed to be 2, i.e., 2/9 = approx. 20%.  It is assumed 

that items within a transaction or itemset are sorted in lexicographic order. The outputs are shown in Tables 4 – Table 12. 
Table 4 Table 5 Table 6 Table 7 Table 8 

C1 

Itemset Sup. 
count 

{I1} 3 

{I2} 4 

{I3} 6 

{I4} 4 

{I5} 3 

{I6} 5 
 

L1 

Itemse
t 

Sup. 
count 

{I1} 3 

{I2} 4 

{I3} 6 

{I4} 4 

{I5} 3 

{I6} 5 
 

C2 

Itemset 

{I1,I2} 

{I1,I3} 

{I1,I4} 

{I1,I5} 

{I1,I6} 

{I2,I3} 

{I2,I4} 

{I2,I5} 

{I2,I6} 

{I3,I4} 

{I3,I5} 

{I3,I6} 

{I4,I5} 

{I4,I6} 

{I5,I6} 
 

C2 

Itemset Sup. 
count 

{I1,I2} 0 

{I1,I3} 2 

{I1,I4} 2 

{I1,I5} 2 

{I1,I6} 1 

{I2,I3} 2 

{I2,I4} 2 

{I2,I5} 0 

{I2,I6} 3 

{I3,I4} 2 

{I3,I5} 3 

{I3,I6} 3 

{I4,I5} 1 

{I4,I6} 2 

{I5,I6} 0 
 

L2 

Itemset Sup. 
count 

{I1,I3} 2 

{I1,I4} 2 

{I1,I5} 2 

{I2,I3} 2 

{I2,I4} 2 

{I2,I6} 3 

{I3,I4} 2 

{I3,I5} 3 

{I3,I6} 3 

{I4,I6} 2 
 

 

Table 9 Table 10 Table 11 Table 12 

C3 

Itemset 

{I1,I3,I4} 

{I1,I3,I5} 

{I1,I4,I5} 

{I2,I3,I4} 

{I2,I3,I6} 

{I2,I4,I6} 

{I3,I4,I5} 

{I3,I4,I6} 

{I3,I5,I6} 
 

C3 

Itemset 

{I1,I3,I4} 

{I1,I3,I5} 

{I2,I3,I4} 

{I2,I3,I6} 

{I2,I4,I6} 

{I3,I4,I6} 
 

C3 

Itemset Sup.count 

{I1,I3,I4} 1 

{I1,I3,I5} 2 

{I2,I3,I4} 1 

{I2,I3,I6} 2 

{I2,I4,I6} 1 

{I3,I4,I6} 1 
 

L3 

Itemset Sup.count 

{I1,I3,I5} 2 

{I2,I3,I6} 2 
 

 

At the end, the candidate set of 4-itemsets, C4 = Ø, and the 

algorithm terminates. All the frequent itemsets in the 

transaction database, L1, L2 and L3, have been found as shown 

in Tables 5, 8 and 12. 

4. Working of the algorithm 

The Apriori algorithm works as follows: Step 1 

(Fig. 1) invokes the find_frequent_1_itemset procedure, 

which scans the input transaction data D and forms C1, the 

candidate 1-itemsets, which is nothing but the list of unique 

individual items in D. It then computes the number of 

occurrences of each item and produces L1, which contains the 

items occurring with the minimum support count given, 

min_sup (assumed to be 2 in this example). Successive 

candidate itemsets Ck are then generated iteratively (steps 2-

10) by joining Lk-1 with Lk-1 (step 6). The apriori_gen procedure 

generates the candidate sets and eliminates those having a 

subset that is not frequent. This is called pruning and is done 

by invoking the has_infrequent_subset procedure. Finally, all 

those candidates satisfying minimum support form the set of 

frequent itemsets, L1 through L3. Thus we can see that the 

itemsets {I1, I3, I5} and {I2, I3, I6} occur 2 times each in the 

transaction dataset D. 

5. Observations with existing algorithm 

We have used the Apriori algorithm shown in Fig. 1 

to mine the input data set and got the result. In the candidate 

2-itemset set C2 (Table 6) generated by the algorithm from L1 
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(Table 5), the presence of itemsets {I1, I2} and {I5,I6} may 

be noted. Each of these itemsets has items drawn from the 

same category, i.e., in itemset {I1, I2}, both items I1 and I2 

belong to the category Computer and similarly both the items 

I5 and I6 belong to the category Accessories. Since we have 

assumed that not more than one item is chosen from a 
category, we would not like these itemsets to be generated as 

candidates. They were generated because the apriori_gen 

procedure considers all itemsets of Lk-1 for k-itemset candidate 

generation, regardless of categories, and always executes n x n 

times, where n is the size of Lk-1. Hence we bring out a 

modified algorithm taking into consideration special cases 

when the itemsets contain classified items under several 

categories, with a transaction involving no more than one item 

from each category. This method could not only be applied to 

special applications, but also would reduce the no. of 

iterations in generating the candidate itemsets. 
6. Modified algorithm for Classified Data Sets 

We now present a modified version of the Apriori 

algorithm in Fig. 2 to mine classified data sets, with items 

falling under distinct categories, assuming that a transaction 

involves maximum one item in each category.

 

 

Algorithm: Apriori_Class. Find frequent itemsets belonging to different categories using an iterative level-wise 

approach based on candidate generation. 

Input: Database D of transactions involving classified items, min. support threshold, min_sup. 

Output: L, frequent itemsets in D. 

// This algorithm considers items classified under various identified categories,  

// eg., A,B,C, etc. The items within each category bear unique IDs, eg., A1,A2,D3,E4, etc.  

// A typical transaction comprises zero or max. one item selected from each category.  

// Hence, the transaction database D is a matrix, with rows representing transactions and  

// columns containing item IDs under various categories. 

// Items within a transaction or itemset are assumed to be sorted in lexicographic order. 

 

Method: 

 
1. L1= find_frequent_1-itemsets(D, min_sup); 

2. for (k = 2;Lk-1 <> Ø; k++) 

3. { 

4.         Ck = apriori_gen(Lk-1); 

5.         for each candidate  c ∈  Ck 

6.                for each transaction t ∈  D 

7.                         if  c∈  t then c.count++; 

8.         Lk = {c ∈  Ck | c.count >= min_sup); 

9. } 

10. return L = ∪ kLk; 

 

procedure find_frequent_1-itemsets(D, min_sup) 

// Form C1, the candidate 1-itemset list from D, with the items uniquely listed in sorted order. 

9. C1 = {c ∈  D}; 

10. for each candidate  c ∈  C1 

11.        for each transaction t ∈  D 

12.                if c ∈  t then c.count++; 

13. L1 = {c ∈  C1| c.count >= min_sup); 

return L1; 

 

procedure apriori_gen(Lk-1) 

1. if k = 2 then 

2. begin 

3.     ub = count(Lk-1); 

4.     for (l1 = 1; l1 < ub; l1++) 

5.     begin 

6.          l2 = l1 + 1; 

7.          repeat until (category(l2) > category(l1)) or (l2 > ub)  

8.                    l2++; 

9.          if (l2 <= ub) and (category(l2[1]) > category(l1[1])) then 

10.          begin 
11.                 lb = l2; 
12.                 for (j = lb; j ≤ ub; j++) 
13.                { 
14.                    l2 = Lk-1[lb]; 
15.                    c = l1           l2; 
16.                    if has_infrequent_subset(c, Lk-1) then delete c; 

Fig. 2. Modified Apriori algorithm for mining classified data sets. 
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17.                    else add c to Ck; 

18.                } 
19.           end; 
20.     end; 
21. end; 
22. else if k > 2 then 
23.       begin 
24.             ub = count(Lk-1); 

25.             for (l1 = 1; l1 < ub; l1++) 
26.             begin 
27.                    l2 = l1 + 1; 
28.                    while  (l1[1] = l2[1]) ^ (l1[2] = l2[2]) ^ …^ (l1[k-2] = l2[k-2]) ^ (l1[k-1] < l2[k-1]) do 

29.                        begin 
30.                              if (category(l2[k-1]) > category(l1[k-1])) then 
31.                                   begin 
32.                                        c = l1           l2; 
33.                                        if has_infrequent_subset(c, Lk-1) then delete c; 
34.                                        else add c to Ck; 

35.                                   end; 
36.                                   l2 ++; 
37.                        end; 
38.             end; 
39.       end; 
40. return Ck; 

 

procedure has_infrequent_subset(c:candidate k-itemset; Lk-1:frequent (k-1) itemsets) 

1. for each (k-1)-subset s of c 

2.         if s ∉  Lk-1 then return TRUE; 

3. return FALSE; 

 

We now apply the modified algorithm to our example. Table 13 shows the same items shown earlier in Table 1, 

but now assigned distinct IDs under four categories A - D. Table 14 shows the transactional data of Table 2 as a selection 

from the various categories. 

Table 13 – Items in Computer shop with unique IDs 

A - COMPUTER B - PERIPHERALS C – SOFTWARE D - ACCESSORIES 

A1 Desktop B1 Printer C1 Games D1 UPS 

A2 Laptop     D2 Flash Drive 

 

Table 14 – Transactional data for Computer shop 

TID A - 

COMPUTER 

B - 

PERIPHERALS 

C - 

SOFTWARE 

D - 

ACCESSORIES 

T1 A1 B1  D1 

T2  B1  D1 

T3 A2 B1  D2 
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T4 A1  C1 D2 

T5 A2   D2 

T6 A2 B1 C1 D2 

T7 A2  C1  

T8 A1 B1 C1 D1 

T9  B1  D2 

 

Applying the modified Apriori Algorithm given in Fig. 2 to Table 14, we generate the candidate itemsets and 

frequent itemsets, with minimum support count 2.  The outputs are shown in Tables 15 through 23. 

 

Table 15 Table 16 Table 17 Table 18 Table 19 

C1 

Itemset Sup. 

count 

{A1} 3 

{A2} 4 

{B1} 6 

{C1} 4 

{D1} 3 

{D2} 5 
 

L1 

Itemset Sup. 

count 

{A1} 3 

{A2} 4 

{B1} 6 

{C1} 4 

{D1} 3 

{D2} 5 
 

C2 

Itemset 

{A1,B1} 

{A1,C1} 

{A1,D1} 

{A1,D2} 

{A2,B1} 

{A2,C1} 

{A2,D1} 

{A2,D2} 

{B1,C1} 

{B1,D1} 

{B1,D2} 

{C1,D1} 

{C1,D2} 
 

C2 

Itemset Sup.count 

{A1,B1} 2 

{A1,C1} 2 

{A1,D1} 2 

{A1,D2} 1 

{A2,B1} 2 

{A2,C1} 2 

{A2,D1} 0 

{A2,D2} 3 

{B1,C1} 2 

{B1,D1} 3 

{B1,D2} 3 

{C1,D1} 1 

{C1,D2} 2 
 

L2 

Itemset Sup. 

count 

{A1,B1} 2 

{A1,C1} 2 

{A1,D1} 2 

{A2,B1} 2 

{A2,C1} 2 

{A2,D2} 3 

{B1,C1} 2 

{B1,D1} 3 

{B1,D2} 3 

{C1,D2} 2 
 

 

Table 20 Table 21 Table 22 Table 23 

C3 

Itemset 

{A1,B1,C1} 

{A1,B1,D1} 

{A1,C1,D1} 

{A2,B1,C1} 

{A2,B1,D2} 

{A2,C1,D2} 

{B1,C1,D1} 

{B1,C1,D2} 
 

C3 

Itemset 

{A1,B1,C1} 

{A1,B1,D1} 

{A2,B1,C1} 

{A2,B1,D2} 

{A2,C1,D2} 

{B1,C1,D2} 
 

C3 

Itemset Sup.count 

{A1,B1,C1} 1 

{A1,B1,D1} 2 

{A2,B1,C1} 1 

{A2,B1,D2} 2 

{A2,C1,D2} 1 

{B1,C1,D2} 1 
 

L3 

Itemset Sup.count 

{A1,B1,D1} 2 

{A2,B1,D2} 2 
 

 

As before C4 = Ø, and the algorithm terminates when all the 

frequent itemsets in the transaction database have been found. 

7. Working of the modified algorithm 

The modified Apriori algorithm in Fig. 2 uses a 

revised apriori_gen procedure in which Ck generation is 

considered separately for cases k=2 and k>2. While generating 

C2 from L1 (Fig. 2 procedure apriori_gen steps 7-19), two 

items of L1 are joined only when their categories are different. 

Thus the itemsets {A1, A2} and {D1, D2} are not generated 

in the C2 given in Table 17. Moreover, as the items in L1 are 

in sorted lexicographic order, we restrict the scope of items in 

L1 for comparison in each iteration, reducing the range. 

Likewise, in generating C3 from L2 through steps 25-34, two 

items are joined only when their categories are the same. Thus 

we eliminate the generation of itemset {B1, D1, D2} in Table 

20, and this is done by step 30 in Fig. 2. Again the range of 

items to be compared in each iteration is restricted in step 28. 

Steps 6 and 27 also reduce the number of items in Lk-1 for 

comparison by 1, thus reducing the number of iterations still 

further.  

8.  Comparison of the Algorithms 
We now compare the two algorithms and the results 

obtained for our example discussed above for the same 

transaction data set. 

Eliminating itemsets 
The original algorithm-generated C2 given in Table 

6 is compared with the C2 in Table 17 generated by the 

modified algorithm of Fig. 2. The former generates itemsets 

{I1,I2} and {I5,I6} which contain items that are part of the 

same category, as observed above.  However, the 

corresponding itemsets viz., {A1,A2} and {D1,D2} are not 

generated in the C2 given in Table 17, as explained above. 
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Similarly, while generating C3, the itemset {I3,I5,I6} output in 

Table 9 is eliminated in the new algorithm by filtering out the 

itemset {B1,D1,D2} in Table 20. 

Optimising iterations 

 As explained in the previous section, when 

compared to the original algorithm, the new algorithm has far 
fewer iterations, as implemented through the modified 

apriori_gen procedure in Fig.2. In the original procedure in 

Fig. 1, steps 1 and 2 iterate for each item of Lk-1 with itself, 

thus executing n2 times, where n is the size of Lk-1. Whereas 

in the modified procedure in Fig. 2, not only the outer loop 

executes one less time than before (steps 4 and 25), but also 

fewer itemsets are compared in each iteration in the inner 

loop. Hence the candidate sets generation is done much faster. 

Table 24 summarises the results of the comparison 

for generation of each candidate set Ck. It can be noted that 

the original algorithm takes n2 iterations whereas our modified 

algorithm takes a figure of m iterations where m is O(n log n). 
That is, the modified algorithm takes O(n log n) time 

compared to O(n2), which is very significant. Also, the 

number of generated intermediate itemsets in successive 

iterations (during join operation before pruning) is also 

reduced, as seen from the last two columns.

 

Table 24 – Performance comparison of the two Apriori algorithms for the sample transaction data 

Candidate set 

Ck 
Set size 
|Lk-1| 

No. of iterations 

(original) 

No. of iterations 

(modified) 

 No. of itemsets 

generated  

(original) 

No. of itemsets 

generated 

(modified) 

 n n2 m n log n   

C2 6 36 15 10.8 15 13 

C3 10 100 18 23.0 9 8 

C4 2 4 1 1.4 0 0 

Total 18 140 34 35.2 24 21 

 

9.   Performance Analysis 
We now analyse the comparative performance of 

the two algorithms for various cases, based on our testing, 

involving transactions of various sizes of elements and 

categories. Table 25 shows the results. Here we note that the 

total no. of iterations increases with an increase in either the 

no. Elements or the no. of categories. In each case the 

modified algorithm generates fewer itemsets in fewer 

iterations compared to the original algorithm. We plot the 

above results in Charts 1 and 2, which clearly show the 

improved performance. 

Table 25 – Performance comparison of the two Apriori algorithms for various transaction data sizes 

Case

No. 

No. 

Of 

cate

gori

es 

No. Of 

elements 

Total set 

size 

|Lk-1| 

Total no. of 

iterations 

(original) 

Total no. of 

iterations 

(modified) 

 Total no. of 

itemsets 

generated  

(original) 

Total no. of 

itemsets 

generated 

(modified) 

   ∑n ∑n2 ∑m ∑n log n   

1 4 6 18 140 34 35.2 24 21 

2 5 11 19 149 47 37.8 38 28 

3 3 12 17 157 62 37.2 57 41 

4 4 12 23 225 71 50.8 59 49 

5 5 12 28 326 78 69.7 62 54 

 

Further, taking a closer look at Table 25, we get 

some interesting results with regard to transactions involving 

classified data sets with the same number of elements but 

distributed under different number of categories. Table 26 

shows extracts of Table 25 with only the last three rows – 

transactions with of elements 12, but different numbers of 

categories – 3, 4 and 5. We observe that as the no. of 

categories increases, the no. Of iterations in the modified 

algorithm gets closer to n log n, as given by the column ∑m - ∑n 

log n.  Further, as the column reveals, the new no. of iterations 

gets much less than the original no. of iterations as the no. of 

categories. This means that the performance of our modified 

algorithm increases when the same no. of items is distributed 

under more categories, i.e., classification of data sets 

increases. This is a significant result for our modified 

algorithm. Chart 3 depicts the results based on Table 26. 

Table 26 – Performance comparison for data sets with same no. of elements but under different categories 

Case 

No. 

No. of 

elements 

No. of 

catego

ries 

Total set 

size 

|Lk-1| 

Total no. of 

iterations 

(original) 

Total no. of 

iterations 

(modified) 

 Closeness of no. 

of iterations 

(modified) to n 

log n 

Diff. in no. of 

iterations 

(original - 

modified) 

   ∑n ∑n2 ∑m ∑n log n ∑m - ∑n log n ∑ n2 - ∑m 

3 12 3 17 157 62 37.2 24.8 95 

4 12 4 23 225 71 50.8 20.2 154 

5 12 5 28 326 78 69.7 8.3 248 
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10.  
Applications to databases 

One of the important objectives of our adapting the 

Apriori association rule mining technique to classified data 

sets is to apply the concept to the realm of databases to mine 

frequent occurrences of data items. Let us consider a 

relational data table for example. A table consists of tuples or 

rows where each row gives information about a distinct 

object, each object having values under distinct columnar 

attributes. Such a table of data values could be considered as a 

classified data set in  

 

our context. Each row can be taken to be a 

transaction, each attribute a category, and each value to be a 

data item or an element. Thus, a table is looked upon as a set 

of transactions involving classified data items under various 

categories. This correspondence gives us an easy way to apply 

our Apriori algorithm to mine frequent occurrences of values 

in relational databases.  

For example, let us look at a sample library catalog 

of books represented by Table 27. 

Table 27 – Sample Library Books Catalog for Finding Frequent Itemsets 

Book 

No. 

Title Author Publisher Year 

Published 

1 Java Schildt TMH 1998 

2 C Schildt TMH 1997 

3 HTML Collins Pearson 2000 



©2010 International Journal of Computer Applications (0975 - 8887) 

Volume 1 – No. 27 
 

28 
 

4 XML Collins Pearson 2002 

5 C Balagurusamy TMH 2001 

6 XML Williamson TMH 2003 

7 C++ Schildt TMH 2001 

 

Applying our algorithm to the above table, we get the 

frequent itemsets {Schildt, TMH} and {Collins, 

Pearson}, assuming min_sup to be 2.  

Time taken in secs by Apriori algorithms on 
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Chart 4 Chart 5 

We tested the original and our modified algorithms 

on sets of relational tables of various sizes and obtained a 

good performance. The results are plotted in Charts 4 and 5. 

In Chart 4, the time values are shown for minimum support 

threshold value of 0.2 for various data volumes (no. of records 

or transactions). Chart 5 depicts the times taken for a data 

volume of 100k records for various minimum support 

threshold values. We observe that there is a significant 

improvement in the overall execution time by our 

optimisation. 

 

11.  Conclusion and Future Work 
In this paper we presented a modified Apriori association rule 

mining algorithm for discovering frequent patterns in data sets 

that are classified into categories, assuming a maximum of 

one item per category. This specialised algorithm takes less 

time (O(n log n))  than the general version (O(n2)) by reducing 

the number of iterations as well as the number of candidate 

sets generated. We also showed that, for the same number of 

data items, the optimised algorithm performs better when the 

items are distributed under more categories. While we have 

taken up the Apriori algorithm for adaptation to classified data 

sets, our approach could be used in other similar algorithms as 

well. The proposed algorithm is appropriate to databases to 

mine frequent occurrences of item values. We are working on 

extending this approach to mine semi-structured data like 

XML used in Web services. Future work would focus on 

applying Association Rule mining techniques to enhance Web 

services and Web mining with better data management in the 

areas of storage and search facilities where the techniques 

have a lot of potential. 

 

REFERENCES 
1. R. Agrawal, T. Imielinski, and A. Swami. Mining 

association rules between sets of items in large databases. 

In Proc. of ACM SIGMOD COMD, 1993. 

2. R. Agrawal, T. Imielinski, and A. Swami. Database 

Mining: a performance perspective, IEEE TKDE, Dec. 

1993. 

3. R. Agrawal, H. Mannila, R. Srikant, H. Toivonen and 

A.I. Verkamo. Fast Discovery of Association Rules. In 

U.M. Fayyad, et al. Advances in Knowledge Discovery 

and Data Mining, AAAI/MIT Press, 1996. 

4. R. Agrawal and R. Srikant. Fast Algorithms for Mining 

Association Rules in Large Databases. In Proc. Of the 

20th VLDB Conf., 1994. 

5. R.J. Bayardo Jr. Efficiently mining Long patterns from 

databases. In Proc. Of the ACM SIGMOD ICMD, 1998. 

6. F. Bodon. A Fast Apriori Implementation. In Proc. 1st 

FIMI 2003. 

7. S. Brin, R. Motwani, J.D. Ullman, and T. Tsur. Dynamic 

itemset counting and implication rules for market based 

data. ACM SIGMOD Record, 1997. 

8. M.S. Chen, J. Han and P.S. Yu. Data Mining: An 

overview from a database perspective.  IEEE 

Transactions on Knowledge and Data Engineering, 1996. 

9. B. Dunke and N. Soparkar. Data organization and access 

for efficient data mining. In Proc. Of 15th ICDE, 1999. 



©2010 International Journal of Computer Applications (0975 - 8887) 

Volume 1 – No. 27 
 

29 
 

10. U.M. Fayyad, G. Piatesky-Shapiro, P. Smyth and R. 

Uthurusamy, editors. Advances in Knowledge Discovery 

and Data Mining. AAAI Press, 1998. 

11. V. Ganti, J. Gehrke, and R. Ramakrishnan. Mining very 

large databases. IEEE Computer, 1999. 

12. J. Han and M. Kamber, Data Mining Concepts and 
Techniques, Morgan Kaufmann Publishers, 2001. 

13. J. Han, J. Pei, and Y. Yin. Mining frequent patterns 

without candidate generation. ACM SIGMOD ICMD, 

2000. 

14. H. Mannila, H. Toivonen and A.I. Verkamo. Efficient 

algorithms for discovering Association Rules. AAAI 

Workshop on Knowledge Discovery in Databases, 1994. 

15. M.H. Margahny and A.A. Mitwaly. Fast Algorithm for 

Mining Association Rules. AIML 05 Conf, Egypt. 

16. S. Orlando, P. Palmerini and R. Perego. Enhancing the 

Apriori Algorithm for Frequent Set Counting. DaWak 

2001. 

17. J.S. Park, M.-S. Chen and P.S. Yu. An effective hash-

based algorithm for mining association rules. In Proc. Of 

ACM SIGMOD ICMD, 1995 

18. A. Savasere, E. Omiecinski and S.B. Navathe. An 

Efficient Algorithm for Mining Association Rules in 

Large Databases. In Proc. Of 21st VLDB Conf., 1995 

19. P. Shenoy, J. Haritsa, S. Sudarshan, G. Bhalotia, M. 

Bawa, and D. Shah. Turbocharging vertical mining of 

large databases. In Proc. Of the ACM SIGMOD ICMD, 

2000. 

20. H. Toivonen. Sampling Large Databases for Association 

Rules. In The VLDB Journal, 1996. 


