
©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 5

80

Optimized Convex Hull With Mixed (MPI and OpenMP)
Programming On HPC

ABSTRACT

As a programmer, one is aspired to solve ever larger, more
memory intensive problems, or simply solve problems with

greater speed than possible on a sequential computer. A
programmer can turn to parallel programming and parallel
computers to satisfy these needs. Parallel programming
methods on parallel computers gives access to greater memory
and Central Processing Unit (CPU) resources which is not
available on sequential computers. This paper discusses the
benefits of developing 2D and 3D convex hull on mixed mode
MPI, OpenMP applications on both single and clustered SMPs.
In this experimentation for purpose of optimization of 3D

convex hull we merged both MPI and OpenMP library which
gives another mixed mode programming method to get
optimized results. The job is divided into sub-jobs and are
submitted to cluster of SMP nodes using MPI and these sub-
jobs are computed in parallel using OpenMP threads in SMP
nodes. Experiments on sequential, MPI, OpenMP and Hybrid
programming models show that Hybrid programming model
substantially outperforms others.

Keywords

HPC, MPI, OpenMP, SMP, threads, mixed mode programming.

1. INTRODUCTION

Today most systems in high-performance computing (HPC)
features a hierarchical hardware design. Shared memory nodes

with several multi-core CPUs are connected via a network
infrastructure. Hybrid parallel programming must combine
distributed memory parallelization on the node interconnected
with shared memory parallelization inside each node. In this
paper cases are pinpointed where a hybrid programming model
can certainly be the superior solution because of reduced
communication needs and memory consumption or enhanced
load balance. Finally it gives an outlook on possible
standardization goals and extensions that could make hybrid

programming easier to do with performance in mind.

2. Characteristics of MPI and OpenMP.

2.1 MPI (Message Passing Interface)

The message passing programming model is a distributed
memory model with explicit control parallelism. Processes are
only able to read and write to their respective local memory.

Data is copied across local memories by using the appropriate
subroutine calls. The message passing interface (MPI) standard
defines a set of functions and procedures that implements the
message passing model.

Characteristics:-

1. MPI codes will run on both distributed and shared memory

architectures.
2. Portable.
3. Particularly adaptable to coarse grain parallelism.
4. Each process has its own local memory.
5. Explicit messaging.

2.2OpenMP (Shared Memory Programming)

OpenMP is an industry standard for shared memory
programming. Based on a combination of compiler directives,
library routines and environment variables it is used to specify
parallelism on shared memory machines. Directives are added to
the code to tell the compiler of the presence of a region to be

executed in parallel, together with some instructions as to how
the region is to be parallelized. This makes use of a fork-join
model.

Characteristics:-

 1. OpenMP codes will only run on shared memory machines.

 2. Not portable.

 3. Permits both course grain and fine grain parallelism.

 4. Uses directives which help the compiler parallelize the code.
 5. Each thread sees the same global memory.
 6. Implicit messaging.
 7. Use fork-join model for parallel computation.

Dr.D.B.Kulkarni
I/C H.O.D. and Professor

 Walchand college of
Engineering, Sangli

(Autonomous institute)

Sandip V.Kendre
Lecturer

SIT and Research
Center, Nashik

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 5

81

3. Design of MPI + OpenMP Mixed Hybrid

Model.

3.1 Introduction

The cluster-computing paradigm has come to be recognized as
the most cost effective approach to large-scale numerical
simulations. As the clustered SMPs (Symmetric
Multiprocessing) become more prominent, it becomes more
important for the applications to be portable and efficient on
these systems. Message passing codes written in MPI are

obviously portable and should transfer easily to clustered SMP
systems. But, shared memory model such as OpenMP should
offer a more efficient parallelization strategy within a node. The
aim of this paper is obtain optimal performance from both the
processors of all the nodes in the cluster while doing parallel
processing with MPI and OpenMP. The primary motivation for
considering the use of OpenMP on SMP architecture is to
achieve optimum performance. In particular, if an application is

using MPI for on-node communications.

3.2 Mixed Mode Programming

By utilizing a mixed mode programming model one should be
able to take advantage of the benefits of both models. For

example a mixed mode program may allow making use of the
explicit control data placement policies of MPI with the finer
grain parallelism of OpenMP. The majority of mixed mode
applications involve a hierarchical model, MPI parallelization
occurring at the top level, and OpenMP parallelization occurring
below.

3.3 Implementing a mixed mode application

 Figure 3.1 shows a simple mixed mode pseudo code, to
demonstrate how a mixed mode code is implemented. MPI is
initialized and finalized in the usual way, using the MPI INIT
and MPI FINALIZE calls. An OpenMP PARALLEL region

occurs between these calls, spawning a number of threads on
each process.

 Although a large number of MPI implementations are

thread-safe, but this cannot be guaranteed. To ensure the code is
portable all MPI calls should be made within the sequential
regions of the code. This often creates little problem as the
majority of codes involve the OpenMP parallelization occurring
beneath the MPI parallelization and hence the majority of MPI
calls occur outside the OpenMP parallel regions. When MPI
calls occur within an OpenMP parallel region the calls should be
placed inside a CRITICAL, MASTER or SINGLE region,

depending on the nature of the code. Care should be taken with
SINGLE regions, as different threads can execute the code.
Ideally, the number of threads should be set from within each
MPI process using omp set num threads (n) as this is more
portable than the OMP NUM THREADS environment variable.

Figure 3.1:- Simple Mixed Mode Pseudo Hybrid code

4. Mixed mode program for Convex Hull.

The convex hull of a set of points in space is the
surface of minimum area with convex (outward) curvature that

passes through all the points in the set. In three dimensions, this
set must contain at least four distinct, non-coplanar points to
make a closed surface with nonzero enclosed volume. With the
possible benefits of writing a mixed mode application, this
section describes how convex hull code is implemented in
OpenMP, MPI and as a mixed MPI/OpenMP code.

 The parallel version of convex hull program is design
in OpenMP and Hybrid. Mostly MPI cannot be used for
parallelizing convex hull program, as it is difficult to handle
recursive call in MPI. While designing parallel version with
OpenMP first divide the set of point in 2 parts by drawing line
between minimum x and maximum x co-ordinate. This part will
be executed serially by master thread. Now with every point in

upper half draw a triangle then a set of three point is obtained
i.e. p1(x1, y1), p2(x2, y2), p3(x3,y3). Where p1 is the point
having minimum x co-ordinate and p2 is point having maximum
x co-ordinate and p3 is the point of the triangle having
maximum area.

Calculate area and find out the point which is inside or
outside of the triangle by following determinate formula.

…………………………………………. (1)

If the value of the f(x) is negative it is considered that
the point is inside the triangle otherwise the point is outside the
triangle i.e. the point is considered to be on convex hull. The
above process is called recursively by another thread till every

input point is considered as shown in figure3.2 and results are
shown in table 4.2.

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 5

82

Figure 3.2: 2D convex hull solution step.

Further extend this method for 3D convex hull using 4 x 4
determinants. This case divide problem into three subtasks for

parallel computation of each plane which is assigned to
OpenMP threads. Continue this process till every input point is
considered. Above two methods gives better results on hybrid
than that of MPI and OpenMP. The algorithms for 3D convex
hull are explained below.

4.1. Algorithm for Hybrid 3D Convex Hull

Same process can be used for implementation of 3D convex
hull. For this instead of area calculate volume of trapezoid using
4*4 determinants and use the three independent planes for
parallel computation of convex hull.

1. Quick hull(Point Set S, Point Upper, Point Lower)

2. FIND_MAX(X,Y,Z)

3. MPI_INIT (….)
4. Quick hull(Point Set S, Point upper)
5. OMP_SET_NUM_THREADS(n)

6. OMP PARALLEL DO PRIVATE (...) & $OMP

SHARED (...)

7. DO ….find volume (….)

 is left (...)

8. S1= points of S on or left of plane

9. Return Quick hull(Point Set S, Point upper)
end do.

10. OMP end parallel do

11. Do same for Quick hull(Point Set S, Point Lower)

12. Do some MPI computation and communication.

13. Call MPI_Finalise()

14. End

4.3 Result and performance analysis.

In this section following some cases are discussed
using Total view 2.8.6.0 analysis tool. For the analysis of hybrid
model, the architecture used is HP ProLiant DL786 G5 series
server, which delivers leading headroom and expendability for
x86 visualization and enterprise applications. With eight number
of processor supported Quad-Core AMD Opteron Processor.

Following are some cases on which discuss performance
analysis of mixed Hybrid model.

1. Performance analysis of OpenMP and
Hybrid programming for 2D convex hull programs on Multi-
core system for finding outermost point from the given set of
point as shown in the table 4.2 and figure4. 2.

 Table 4.2:- Performance of OpenMP Vs Hybrid for
 solving 2D convex hull.

 Figure 4.2:- Performance of Sequential Vs
 OpenMP Vs Hybrid for solving 2D convex hull.

Number

of
points

Sequential

Time(sec)

OpenMP

Time (sec.)

Hybrid

Time (sec.)

100 0.004 0.000853 0.002181

1000 0.006 0.002163 0.002793

100000 0.083 0.059732 0.032832

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 5

83

2. Performance analysis of OpenMP with different
number of threads on multi-core system as shown in
the table4.3 and figure4.3.

 Table 4.3:- Time of Convex hull OpenMP

 program with respect to number of threads.

No. Threads OpenMP_Time

4 8.309097

8 8.233838

16 5.803572

20 5.298377

40 2.774500

50 2.743215

100 1.890797

150 1.780325

200 1.138228

250 1.137623

300 1.192194

 Figure 4.3:- Time of Convex hull OpenMP program
 with respect to number of threads.

4. Performance analysis of OpenMP and Hybrid
programming for 3D convex hull programs on dual-core system
for finding outermost point from the given set of point as shown
in the table4.4 and figure4.4

Table 4.4:- Performance of OpenMP Vs Hybrid for

 solving 3D convex hull.

Number of
Points

OpenMP
Time (sec.)

Hybrid
Time(sec.)

50 0.001331 0.002744

100 0.009259 0.010443

200 0.150393 0.145481

300 1.658472 1.047387

400 11.54087 6.922600

 Figure 4.4:- Performance of OpenMP Vs Hybrid for
 solving 3D convex hull.

5. CONCLUSION

With the increasing prominence of clustered SMPs in the HPC
market, the importance of writing the most efficient and portable
applications for these systems will grow faster. While message
passing is required between nodes, OpenMP offers an efficient,

and considerably easier, parallelization strategy within an SMP
node. Hence a mixed mode programming model may provide
the most effective strategy for an SMP cluster.
In practice, serious consideration must be given to the nature of
the codes before embarking on a mixed mode implementation.
In some situations we get significant benefit obtained from a
mixed mode implementation in the parallel (MPI) code if it
suffers from:

1. Poor scaling with MPI processes due to i.e. load

imbalance or too fine a grain problem size.
2. Memory limitations due to the use of a replicated data

strategy.
3. A restriction on the number of MPI processes

combinations.
 Thus in addition, to 2D convex hull and 3D convex

hull algorithms it is observed that the hybrid mixed mode

programming model gives better performance than that of the
MPI and OpenMP programming model, for the appropriate
number of tasks and threads assigned to each processor.

6. REFERENCES

[1] D.S. Henty, “Performance of hybrid message-passing and
shared-memory parallelism for Discrete Element Modeling”,
presented at Supercomputing, Dallas, 2000.
http://www.sc2000.org/proceedings/techpapr/papers/pap154.pdf.

[2] MPI: “A Message-Passing Interface standard”, Message
Passing Interface Forum, June1995.
http://www.mpi-forum.org/

http://www.sc2000.org/proceedings/techpapr/papers/pap154.pdf.
http://www.mpi-forum.org/

©2010 International Journal of Computer Applications (0975 – 8887)

Volume 1 – No. 5

84

[3] OpenMP, The OpenMP ARB. http://www.OpenMP.org/

 [4] “A performance comparison of C with MPI and OpenMP”
on the Origin 2000, J. Hoeflinger, Centre for Simulation of
Advanced Rockets. http://polaris.cs.uiuc.edu/_hoefling/Talks/

[5] D.K. Tafti, “Computational power balancing”, Help for the
overloaded processor. http://access.ncsa.uiuc.edu/Features/
Load-Balancing/

[6] P. Lanucara and S. Rovida, “Conjugate-Gradient
algortihms: An MPI-OpenMP implementation on distributed
shared memory systems”, proceeding of the 1st European
Workshop on OpenMP, Lund, Sweden, 1999.

http://www.openmp.org/
http://polaris.cs.uiuc.edu/_hoefling/Talks/
http://access.ncsa.uiuc.edu/Features/%20Load-Balancing/
http://access.ncsa.uiuc.edu/Features/%20Load-Balancing/
http://access.ncsa.uiuc.edu/Features/%20Load-Balancing/

