Abstract

In this paper, an attempt has been made to tune the fractional order PID controller parameters for three interacting tank process using Bacterial Foraging Algorithm (BFA). PID controllers are tuned to satisfy three control specifications as the tunable parameters are the proportional gain, integral gain and derivative gain. The search space can be improved by the investigation of fractional order PID which involves two more parameters, the integral order and the derivative...
order thereby handling two additional specifications. Grunwald-Letnikov definition is used for
the defining the derivative controller and Oustaloup’s filter technique is used for the
approximation of the function. Tuning is complicated by the mathematical approach. The
tuning is effected using BFA technique. The performance index selected is Integral Square
Error (ISE). The proposed BFA tuned FOPID controller will serve as a viable controller for
automating three interacting tank process.

References

 Press.
 Integer”, Hermes.
 Diego.
- Tenreiro Machado, J. A, “System modelling and control through fractional-order
derivative in the behaviour of real materials”, ASME Journal of Applied Mechanics, 51
(june 1984), pp. 294-298.
 order adjustment rules and fractional order reference models in model-reference adaptive
 control”, Nonlinear Dynamics, 29 (July 2002), pp. 269-279.
 Kalmar, Sweden.
- Astrom, K., Hagglund, T. 1995. “PID Controllers: Theory, Design and
 Tuning”, Instrument Society of America, Research Triangle Park.
- Cao, J., Liang, J., Cao, B. 2005. “Optimization of fractional order PID controllers
 based on genetic algorithms”, Proceedings of the International Conference on Machine
 Learning and Cybernetics, Guangzhou, 18–21 August.
- Caputo, M. “Linear model of dissipation whose Q is almost frequency
 529–539.
- Chengbin, Ma., Hori, Y. 2004. “The application of fractional order PID controller for
 robust two-inertia speed control”, Proceedings of the 4th International Power Electronics
 and Motion Control Conference, Xi’an, August.
 linear time invariant systems”, Proceedings of the ASME 2005 International Design
 Engineering Technical Conferences & Computers and Information in Engineering Conference,

Index Terms

Computer Science

Applied Sciences

Keywords

Bacterial Foraging Fractional Order Controller Interacting Tank Process Integral Square Error Optimization
Fractional Order PID Controller Optimized using Bacterial Foraging Technique for Three Interacting Tank Process considered as a Third Order Process