Abstract

This paper represents the implementation of a PV Model using MATLAB/Simulink software and also its hardware implementation. The PV system can be PV cell, module, and array for most reliable Use on simulation based circuit. The proposed model is designed PV system from the mathematical equations of Photo current and photovoltaic voltage by using user-friendly icon and dialogue box from simulink block Libraries. That makes the mathematical PV model properly simulated and analyzed with power electronics interference and maximum power point Tracking control system. By considering the effect of sunlight irradiance and cell temperature, the output current, voltage and power characteristics of PV model are simulated and optimized using the proposed model. This emphasized the dynamics behavior of PV system to be easily simulated, analyzed, and optimized.
References

- Power Electronics, Mohan, Undeland, Robbins. B. H Khan
- Analysis of photovoltaic cells with closed loop boost converter, International Journal of Advances in Engineering & Technology, Mar. 2013. ©IJAET ISSN: 2231-196
- Design and Analysis of Grid connected Photovoltaic System Bo Yang, Wuhua Li, Member, IEEE, Yi Zhao and Xianding He, IEEE Transactions on Power Electronics, Vol. 25, No. 4, April 2010.
- Dhople, S. V., Davoudi, A. and Chapman, P. L., "Dual stage Converter to improve transfer efficiency and maximum power point tracking feasibility in photovoltaic energy-conversion systems"; Applied Power Electronics Conference and Exposition (APEC), 2010
- IEC 61727 second edition 2004, "International standard, Photovoltaic (PV) systems- Characteristics of the utility interface"; 2004


**Index Terms**

Computer Science  
Circuits And Systems

**Keywords**

Mathematical Model Of Photovoltaic Cell; Photovoltaic Module; Array; Boost Converter; Mppt Algorithm; Pwm; Single Phase Inverter; Three Phase Inverter; Matlab/simulink; Gate Pulse Using 555 Timer; Voltage Doubler Circuit In Hardware.