Abstract

This paper discusses a proposed model for an energy-efficient smart wireless multi-nodal sensor network. It is used for the collection of greenhouse-related parameters at different locations inside and outside the greenhouse. The sensing nodes are the independent embedded system units which calculate sensing parameters under observation and measure them at different locations inside and outside the greenhouse using close loop control. To achieve this, it is...
decided use of MSPez430RF2500T target board embedded system for each sensor node, which contains 16 bit microcontroller with eight analog channel, 10 bit SAR ADC and RF trans-receiver for wireless communication. At receiving end the same trans-receiver will be employed along with the host computer (base station). A special communication protocol called SensitiTI TM which is designed by Texas Instruments Inc. establishes RF communication between a node and base station. Furthermore this data will be processed in tabular and graphical format by the host computer. This information is use to control the motion of cooling fans and foggers On and Off remotely or manually. The same information can also be communicated via internet.

References

- Huixin Shi, Wageningen UR, 2006 Nour Habjoka Reader of greenhouse crop production chain
- D. D Chaudhary, S. P Nayse, L. M Waghmare Feb 2011 "Application of Wireless Sensor Networks for Greenhouse Parameter Control in Precision Agriculture",
- Mohsen Alipour, Mohammad Loghavi 2013 "Development and Evaluation of a

Comprehensive Greenhouse Climate Control System Using Artificial Neural Network;
Universal Journal of Control and Automation 1(1): 10-14, DOI: 10. 13189/ujca 2013, 010102
- Yongxian Song, Chenglong Gong, Yuan Feng, Juanli Ma, Xianjin Zhang 2011
&quo;Design of Greenhouse Control System Based on Wireless Sensor Networks and AVR Microcontroller&quo;; Journal of Networks, Volume 6, No. 12.
- Rohit K. Nikhade, S. L. Nalbalwar 2013 "Monitoring Greenhouse Sensor Network",
International Journal of Advance Computer Research (ISSN (print) : 2249-7277 , ISSN (online) : 2277-7970)
- S. U. Zugade, Prof. Dr. R. S. Kawitkar 2012 "Advanced Greenhouse Using Hybrid Wireless Technologies"; International Journal of Advanced Research in Computer Science and Electronics Engineering, Volume 1, Issue 4, ISSN : 2277-9043
- Amrutha E. 2013 "CAN Bus Protocol based Greenhouse System";
- Neelam R. Prakash, Dilip Kumar, Tejendar Sheoran, and June 2012
- Wenbin Huang, Guanglong Wang, Jianglei Lu, Fengqi Gao, Jianhui Chen, 2011
"Research of wireless sensor networks for an intelligent measurement system based in ARM"; International conference on Mechanical and Automation Conference on, pp. 1074-1079.
- Bhutada S., Shetty S., Malye R., Sharma V., Menon S., Ramamoothy R., 2005
 "Implementation of a fully automated greenhouse using SCADA tool like LabVIEW";
- Purnima, S. R. N. Reddy 2012 "Design of Remote Monitoring and Control System

- Yan Xijun, Lu Limei, Xu Lizhong, 2009; The Application of wireless sensor network in the Irrigation Area Automatic System

- Jeng-Nan Juang, R. Radharamanan, 2010; Low Cost Soil Moisture System: a Capstone Design Project

- Orazio Mirabella, Senior Member, IEEE, and Michele Brischetto; A Hybrid Wired/Wireless Networking Infrastructure for Greenhouse Management

- Kiril Popovski; Greenhouse Climate Factors; GHC Bulletin, January 1997

- Nobel, P. S. 1991; Physicochemical and Environmental Plant Physiology

- James A. Bunce; Responses of stomatal conductance to light, humidity and temperature in winter wheat and barley grown at three concentrations of carbon dioxide in the field; Global Change Biology (2000) 6, 371-382

Index Terms

Computer Science Wireless

Keywords

Greenhouse Mspez430rf2500t Communication Protocol Sensitiviti Tm