Abstract

This paper discusses a proposed model for an energy efficient smart wireless multi-nodal sensor network. It is used for the collection of greenhouse related parameters at different locations inside and outside the greenhouse. The sensing nodes are independent embedded system units which calculate sensing parameters under observation and measure them at different locations inside and outside the greenhouse using closed-loop control. To achieve this, it is...
decided use of MSPez430RF2500T target board embedded system for each sensor node, which contains 16 bit microcontroller with eight analog channel, 10 bit SAR ADC and RF trans-receiver for wireless communication. At receiving end the same trans-receiver will be employed along with the host computer (base station). A special communication protocol called SensitiTI TM which is designed by Texas Instruments Inc. establishes RF communication between a node and base station. Furthermore this data will be processed in tabular and graphical format by the host computer. This information is use to control the motion of cooling fans and foggers On and Off remotely or manually. The same information can also be communicated via internet.

Refer rences

- Huixin Shi, Wageningen UR, 2006 Nour Habjoka Reader of greenhouse crop production chain,
- Sun Rong-Gao. Wan Zhong, Sun De-Chao 2009 Greenhouse Temperature and Humidity Intelligent Control System
- Huixin Shi, Wageningen
- Saad Rafiq, Mohosin Khan, Ravi Prem, Salman Hasan Khan. 2010 The Design and Analysis of Automated Climatic Control for Greenhouse " Technology Forces(technol. forces): Journal of Engineering and sciences,
- D. D Chaudhary, S. P Nayse, L. M Waghmare Feb 2011 " Application of Wireless Sensor Networks for Greenhouse Parameter Control in Precision Agriculture"
- Ibrahim Al-Adwan, Munaf S. N. Al-D October 2012 " The Use of ZigBee Wireless Network for Monitoring and controlling Greenhouse Climate"
- TELKOMNIKA, Volume 11, No. 9, pp 544-5454, e-ISSN: 2087-278X
- Mohsen Alipour, Mohammad Loghavi 2013 " Development and Evaluation of a

Comprehensive Greenhouse Climate Control System Using Artificial Neural Network
Yongxian Song, Chenglong Gong, Yuan Feng, Juanli Ma, Xianjin Zhang
Universal Journal of Control and Automation 1(1): 10-14, DOI: 10.13189/ujca2013, 010102

Rohit K. Nikhade, S. L. Nalbalwar
Monitoring Greenhouse Sensor Network
International Journal of Advance Computer Research (ISSN (print) : 2249-7277, ISSN (online) : 2277-7970)

S. U. Zugade, Prof. Dr. R. S. Kawitkar
Advanced Greenhouse Using Hybrid Wireless Technologies
International Journal of Advanced Research in Computer Science and Electronics Engineering, Volume 1, Issue 4, ISSN : 2277-9043

Amrutha E.
CAN Bus Protocol based Greenhouse System

Neelam R. Prakash, Dilip Kumar, Tejendar Sheoran, and June
Microcontroller Based Closed Loop Automatic Irrigation System

A. Rahali, M. Guerbaoui, A. Ed-dhak, Y. El Afou, A. Tannouche, A. Lachhab, B. Bouchikhi,
Development of a data acquisition and greenhouse control system based on GSM

Wenbin Huang, Guanglong Wang, Jianglei Lu, Fengqi Gao, Jianhui Chen,
Research of wireless sensor networks for an intelligent measurement system based in ARM
International conference on Mechanical and Automation Conference on, pp. 1074-1079.

Healy, M. Newe, T. Lewis,
Wireless Sensor Node hardware: A review

Shen Jin, Song Jingling, Han Qiuyan, Wang Shengde, Yang Yan,
A Remote Measurement And Control System for Greenhouse Based on GSM-SMS

Chen Peijiang, Jiang Xuehua,
Design and Implementation of Remote Monitoring System based on GSM
Pacific-Asia Workshop on Computational Intelligence and Industrial Application, 2008, pp. 678-681.

N. M. Khairi, M. A. Marni, Shah Rizam M. S. B., Noortawati Md Tahir, M. I. Naimah and H. Zainol Abidin,
Optimization of Strain Guage for Stem Measurement using PIC based Instrumentation
IEEE International Conference on System Engineering and Technology, pp. 196-199.

Mahir Dursun and Semih Ozden,
A prototype of PC based control of irrigation

Bhutada S., Shetty S., Malye R., Sharma V., Menon S., Ramamoorthy R.,
Implementation of a fully automated greenhouse using SCADA tool like LabVIEW

Purnima, S. R. N.
Design of Remote Monitoring and Control System
- Application Note, 25 July 2013, SimpliciTI low power radio frequency (RF) protocol Texas Instruments.
- James A. Bunce; Responses of stomatal conductance to light, humidity and temperature in winter wheat and barley grown at three concentrations of carbon dioxide in the field; Global Change Biology (2000) 6, 371-382.

Index Terms

Computer Science Wireless

Keywords

Greenhouse Mspez430rf2500t Communication Protocol Sensitiviti Tm
Design of Energy Efficient Smart Wireless Embedded System for Study of Greenhouse Related Parameters