Abstract

Caching is a fundamental technique commonly employed to hide the latency gap between
memory and the CPU by exploiting locality in memory accesses. On today’s architectures a cache miss may cost several hundred CPU cycles [1]. In a two-level memory hierarchy, a cache performs faster than auxiliary storage, but is more expensive. Cost concerns thus usually limit cache size to a fraction of the auxiliary memory’s size. This paper represents a comparative predictability about some of the traditional and new replacement techniques in contrast with OPTIMAL replacement technique.

References

- D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho, and C. S. Kim, “LRFU: A spectrum of policies that subsumes the least recently used and least frequently used policies,”
- S. A. Johnson, B. McNutt, and R. Reich, “The making of a standard benchmark for open
Transactions on Knowledge and Data Engineering, vol. 11, pp. 94-107, 1999.
- Yannis Smaragdakis, Scott Kaplan, Paul Wilson, “The EELRU adaptive replacement
of a spectrum of policies that subsumes the least recently used (lru) and least frequently used
- T. Johnson and D. Shasha, “2Q: A low overhead high performance buffer management
- S. Albers, S. Arora, and S. Khanna, “Page replacement for general caching problems,”
Proceedings of the 10th Annual ACM–SIAM Symposium on Discrete Algorithms, pp. 31–40,
1999.
- Kaveh Samiee, "WRP: Weighting Replacement Policy to Improve Cache
- Development of a Virtual Memory Simulator to Analyze the Goodness of Page
Replacement Algorithms Fadi N. , Sibai, Maria Ma, David A. Lill
- The LRU-K Page Replacement Algorithm For Database Disk Buffering Elizabeth J.
O’Neil 1, Patrick E. O’Neill, Gerhard Weikum2 SIGMOD 15193 AVaahin~ton, DC,USA
@1993ACM.
- L. A. Belady, A study of replacement algorithms for a virtual-storage computer, IBM

Index Terms
Computer Science Information Technology

Keywords
Memory Management Cache Performance Replacement Policy Hit Ratio Analysis