Abstract

With the advent of optical CDMA system conventional multiple access techniques such as TDMA and WDMA is losing its interest area of research. This is due to the fact that OCDMA system is more secure and flexible and also provides simplified network management. In this paper the OCDMA simulation model is used to analyze the effect of multiple access interference and wavelength spacing. A detailed analysis of multiple access interference (MAI) which
causes a severe degradation in the link performance such as BER and Q factor for a temporal OCDMA system is done in this paper. It also reveals that for a good quality of transmission for a temporal OCDMA model shown in this paper, the wavelength spacing should be 0.4 nm.

References

- N. G. Tarhuni, "Fiber optic code division multiple access: multiclass optical orthogonal codes, optical power control and polarization encoding," Helsinki University of Technology Communications Laboratory Technical Report, Apr. 2007.
- V. Jyoti, "Performance analysis of One-Dimensional and Two-Dimensional codes in optical division multiple access system," Thapar University, Jun. 2009.
- Shuai Shen, Study of Ultrashort Pulse Code Division Multiple Access Scheme for Fiber-Optic Communications and its Hybrid Spectral Overlay with Wavelength Division Multiple Access technique, Purdue University, Dec 2000.
Analysis of Effect of MAI on an OCDMA System

Index Terms
Computer Science
Wireless Communication

Keywords
Ocdma Pso Mai Ber Q Factor