Optimal RR-Interval Data Length for Entropy based Heart Rate Variability Analysis

Manjit Singh
Dept. of Electronics and Communication
Guru Nanak Dev University, Regional Campus, Jalandhar-144009

Butta Singh
Dept. of Electronics and Communication
Guru Nanak Dev University, Regional Campus, Jalandhar-144009

Gurpreet Singh
Dept. of Electronics and Communication
Guru Nanak Dev University, Regional Campus, Jalandhar-144009

ABSTRACT
Heart Rate Variability (HRV) is defined as the variations between consecutive instantaneous heart rates that occur in the heart as a consequence of a complex internal dynamic balance. Nonlinear analysis of HRV is helpful to assess the cardiac health noninvasively. Approximate Entropy and Sample Entropy are mathematical algorithms to measure the predictability or repeatability with in a time series. This paper compares the approximate entropy and sample entropy on different data lengths, which are 20 minutes, 10 minutes, 5 minutes, 3 minutes and 2 minutes respectively. In addition it has been observed that the measuring time of sample entropy can be reducing beyond 5 minutes.

General Terms
Heart Rate Variability, Approximate Entropy, Sample Entropy.

Keywords
Heart Rate Variability, ECG, Approximate Entropy, Sample Entropy, Data Lengths.

1. INTRODUCTION
Heart rate variability (HRV) is fluctuation of RR intervals around their mean time. The measurement of HRV provides a non-invasive measurement of the sympathetic and parasympathetic activities of Autonomic nervous system (ANS) modulated by the sino-atrial node (SA). Sympathetic activities increase the heart rate and parasympathetic activities decrease the heart rate [1-2].

Traditionally, HRV has been evaluated by linear time domain measure such as Standard deviation of all RR intervals (SDNN), Root mean square of the difference of successive RR interval (RMSSD), 50 counts divided by total number of all RR intervals(pNN50) [3]. Also, by the frequency domain in which power spectral density (PSD) of the RR series is calculated terms of very low frequency (VLF, around 0.0033-0.04HZ), low frequency (LF around 0.04-0.15HZ) and high frequency (HF, around 0.15-0.4HZ) [4].

Afterwards, it has been supposed that analysis of HRV based on the methods of non-linear dynamics might elicit valuable information like assessment of the risk of sudden death. The parameters which have been utilized to measure non-linear properties include, approximate Entropy (ApEn) [5], Sample Entropy (SampEn) [6] and Poincare plot (SD1, SD2) [7]. Where, ApEn and SampEn are mathematical algorithms created to measure the predictability or repeatability with in a time series.

G. H. Lin et al analyzed the results of four measurements of HRV in three minute and five minute and concluded that the measurement of three minute data is not equal to the five minute data. The comparison has been created, which is only based on Time-domain and frequency domain parameters. However, it lacks the results of non-linear domain [8].

The purpose of this paper is to analyze the effect of RR interval data length on entropy based HRV and further, to find out the optimal RR interval data length.

2. MATERIAL AND METHODS
2.1 Material
In this paper the MIT-BIH Arrhythmia Database is used for analysis [9]. The database includes annotations files of 48 Half-Hour ECG recording obtained from 47 subjects but for this particular paper 26 data sets has been utilized. These recordings were digitized at 360 samples per second per channel with 11-bit resolution over a 10mV range. Beat annotations were obtained by reference beat, rhythm, and signal quality annotations. Annotations are labels that point to specific locations within a recording and describe events at those locations [10].

2.2 Methods
2.2.1. Approximate Entropy
In the field of HRV, Approximate Entropy has been widely utilized from many decades. It provides information about the complexity of data which is of shorten length. Basically, ApEn is employed for the measurement of irregularity of the signal. Higher the values of ApEn more will be the irregularities and vice versa. For the calculation of ApEn must have prior information about these parameters, which are defined as follows a) The length m , b) The tolerance value r, c) The data length N. ApEn was introduced by Pincus [5]. In which he suggested that the tolerance value r should be of 0.1-0.25 times of the Standard Deviation (SD) of the data, and m must be 1 or 2 for N data lengths. These N data lengths must be vary from 100-5000 data points. For a given signal u (1), u (2), u (3)... u (N), where N is the total number of data points. For computation of ApEn m must be a positive integer where r must be a positive real number. In our case, the value of r is equivalent to 20% of SD and m=2. The algorithm of ApEn can be summarized as follows:
i Form m vectors X(i) to X(N-m+1) defined by
\[X(i) = [u(i), u(i+1), \ldots, u(i+m-1)], 1 \leq i \leq N - m + 1 \]

ii Define the distance d[X(i), X(j)] between the vectors X(i) and X(j) as the maximum absolute difference their respective scalar components:
\[d[X(i), X(j)] = \max_{1 \leq k \leq m} (u(i+k) - u(j+k)) \]

iii Define \(v^m(i) \) = no. of such that \(d[X(i), X(j)] \leq r \) from which \(c^m_i(r) \) can be defined as:
\[c^m_i(r) = \frac{v^m(i)}{N - m + 1} \]

iv Take the natural logarithm of each \(c^m_i(r) \) and average it over \(i \)
\[\varphi^m(r) = \frac{1}{N - m + 1} \sum_{i=1}^{N-m+1} \ln c^m_i(r) \]

v Increase the \(m \) to \(m+1 \) and repeat the steps 1 to 4 and find
\[\varphi^{m+1}(r) = \frac{1}{N - m + 1} \sum_{i=1}^{N-m+1} \ln c^{m+1}_i(r) \]

vi Finally calculate ApEn for the data of length of \(N \)
\[ApEn(m, r, N) = \varphi^m(r) - \varphi^{m+1}(r) \]

3. RESULTS
Kubious software has been used for the analysis of data. It is an advanced tool for studying the variability of heart beat intervals [13]. ApEn and SampEn have been calculated in this software on different data lengths and the mean and standard deviation of ApEn and SampEn has been pointed in Table 1 and Table 2 respectively.

Approximate Entropy-The means and standard deviation of ApEn measure for different data lengths were shown in Table 1. The results pointed out that ApEn is highly dependent on record length and is lower than expected for short lengths, as lower the value higher will be the regularity. Further, it lacks relative consistency which results in high relative error among different data lengths.

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Length</th>
<th>Approximate Entropy</th>
<th>Relative Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20 minute</td>
<td>1.5274±0.1036</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>10 minute</td>
<td>1.4324±0.1065</td>
<td>6.2198</td>
</tr>
<tr>
<td>3</td>
<td>5 minute</td>
<td>1.1667±0.1185</td>
<td>23.6153</td>
</tr>
<tr>
<td>4</td>
<td>3 minute</td>
<td>0.9625±0.2131</td>
<td>37.1743</td>
</tr>
<tr>
<td>5</td>
<td>2 minute</td>
<td>0.7411±0.1928</td>
<td>51.4797</td>
</tr>
</tbody>
</table>

Sample Entropy: The analyzing results of sample entropy were shown in Table 2. The results show that SampEn is largely independent of record length and value of sample entropy increases with lower measuring time. it is only because SampEn does not count self-matches. In addition SampEn shows less relative error among different data lengths which shows more self-similarity in the same time series.
Table 2. Mean and Standard deviation of Approximate Entropy with Relative Error

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Length</th>
<th>Sample Entropy</th>
<th>Relative Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20 minute</td>
<td>1.7721±0.2121</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>10 minute</td>
<td>1.8084±0.2327</td>
<td>2.0485</td>
</tr>
<tr>
<td>3</td>
<td>5 minute</td>
<td>1.8769±0.2687</td>
<td>5.9139</td>
</tr>
<tr>
<td>4</td>
<td>3 minute</td>
<td>1.9213±0.3481</td>
<td>8.4194</td>
</tr>
<tr>
<td>5</td>
<td>2 minute</td>
<td>2.0082±0.4347</td>
<td>13.3232</td>
</tr>
</tbody>
</table>

Comparison of approximate and sample entropy is pointed in Fig 1. Relative error - For approximate and sample entropy relative error of individual data length is calculated w.r.t 20 minute data length. Hence, results obtained are shown in Table 1 and Table 2. Further, in fig 2 comparison of relative error of ApEn and SampEn w.r.t data lengths has been depicted. Hence, relative error of SampEn is less in comparison to the ApEn (as shown in Table 1 and Table 2). So, it is possible to reduce the measurement time of sample entropy up to 2 minute with just 13% of relative error but in case of approximate entropy relative error increases drastically after 10 minute data length and causes up to 51% in case of 2 minute.

Fig 1. Comparison of Approximate and Sample Entropy

4. CONCLUSION
The results show that the length of RR intervals affects more on approximate entropy rather than sample entropy. While calculating approximate entropy, lower the value of ApEn higher will be the regularity. So, in case of ApEn the optimal RR interval data length is 20 minute. But, for Short-term HRV 5 minute data length is acceptable. Based on findings, it appears that SampEn is less sensitive to changes in data length and is more reliable for short data sets. So, it is possible to reduce the measuring time of sample entropy up to 2 minutes but in case of ApEn it is impossible to reduce the measuring time because of high value of Relative Error.

In the future there is possibility to analyze the different nonlinear parameters such as Poincare plot, Correlation, ApEn, SampEn and Shannon Entropy on 5 minute and 3 minute data length. Comparison should be done between 5 minute and 3 minute data length to show whether 3 minute data would differ significantly from the results of 5 minute data which is regularly used for the short term HRV analysis.

5. REFERENCES

