
International Journal of Computer Applications (0975 – 8887)

Volume 124 – No.5, August 2015

15

Automated Generation of Functional Test Cases

and Use Case Diagram using SRS Analysis

Arjinder Singh
P.G. Student

Chandigarh University
Amritsar, India

Sumit Sharma
Assistant Professor CSE
Chandigarh University

Ludhiana, India

ABSTRACT
Software testing mainly consists of three types of approaches

i.e. specification based testing, model based testing and

coding based testing. In specification based testing, major

concern is to find the missing logic defects that cannot be find

by using other types of testing. Specification testing mainly

uncovers the specification problems in Software Requirement

Specification (SRS). An approach for the generation of

functional test cases from SRS has been presented in this

paper. This approach will help to achieve the early detection

of faults and will reduce the time, cost and effort of the

developer. Proposed model will automatically generate the

functional requirements from the SRS. Template for Use Case

diagram will be automatically generated from the functional

requirements. Activity diagram will be used to generate the

Activity Dependent Table (ADT) and hence Activity

Dependent Graph (ADG) will be generated from ADT.

Functional test paths will be generated by applying the Depth

First Search Algorithm (DFS) as a searching algorithm.

Finally we will generate the test cases from the functional test

paths.

Keywords
SRS, Use Case Diagram, Activity Diagram,DFS

1. INTRODUCTION
Software testing is one of the most salient parts of software

development process. Testing is liable for assuring the

reliability and quality of the software system. Software

products size and complexity is growing with the growing

demands of users, hence time and effort needed for

appropriate testing is increasing at an expeditious rate. Test

cases are designed for every software application. Test cases

can be generated in two ways either automatic or manual.

Manual generation of test cases have number of shortcomings

like time consuming, error prone and high probability of

uncovering the important scenarios of the system [1].

Whereas automatic generation of test cases overcome the

problems faced by the manual testing. Prior generation of test

cases, results in finding ambiguities and inconsistencies in the

software requirement specification and various other design

documents. Hence it will leads towards letting down the cost

of developing the software systems as number of errors are

reduced at early stages of software development [2]. Test

cases generation can be done on the basis of three testing

strategies i.e. specification based testing, model based testing

and coding based testing. Code based testing ensures the

detection and correction of errors in the software system but it

does find the missing logic defects in the software system.

Code based testing does not guarantee the availability of all

features in the software system that are specified by the users.

Design based testing starts from the design of the software

system. With the development of UML diagrams it becomes

easy for the software tester to tests the system, whether the

system is fulfilling the requirements specified. But design

based testing also have some flaws as it does not start from

the root level i.e. the specification level as it totally dependent

on the design document of the software system. Specification

based testing starts from the root of the testing process i.e. by

analyzing the software requirement specification document

that is generated at the time of requirements gathering.

Specification testing approach is also known as functional

testing. Specification based approach has following benefits

 Unveils specification problems

 Best for missing logic defects

 Applies at all granularity levels of software system

 Also responsible for improving schedule and budget

problems in software testing [3]

Mostly test case generation uses code based or design based

testing strategies. Specification based testing also incorporates

the design based testing but at the second level. Firstly it

generates the functional requirements from the software

requirement specification and after identifying all the actors

and use cases from the software requirement specification, it

generates the use case diagram. Unified modeling language

has facilitated us with the number of UML diagrams. From

nine UML diagrams, UML Use Case diagram and Activity

Diagram are used for describing the behavior by portraying

the sequence of use cases and activities in a system. Use case

diagram and activity diagram are two of the diagrams that

plays vital role in the generation of test cases. Use case

diagram becomes the major source for the activity diagram.

For the appropriate coverage of all activities it is necessary to

select the suitable coverage criteria which ensure the covering

of all activity nodes in the system.

The rest of work is organized as follows. Section II will

illustrate the Preliminaries and basic concepts. A review of

work related to problem is presented in Section III. Section IV

includes the proposed methodology for the generation of

functional test cases. And section V represents the conclusion

and future work.

2. PRELIMINARIES AND BASIC

CONCEPTS
In this section we will discuss the basic concepts and

definitions.

2.1 Functional Testing
Functional Testing also have other names referred as black

box testing and specification based testing [4]. It is named as

black box because in this approach tester sees the program as

International Journal of Computer Applications (0975 – 8887)

Volume 124 – No.5, August 2015

16

a black box i.e. tester ignores the way how it is written. Tester

just considered about the requirement of the software.

Functional testing is not similar with white box testing where

internal behavior of the system is needed. It is complementary

approach that is related with uncovering the class of errors

that with code based testing cannot be done.

2.2 Test Case Generation

Test case generation is mainly focused on the programming

portion of the system. Test cases based on source code does

not resolve the specification problems. It only handles the

coding problems so it is necessary to generate the test cases

from the software requirement specification available for

developing the software. Generation of test cases from the

specification also provide the advantage of shifting highly

needed modules earlier in the development process. If test

cases are generated from the specifications then test engineers

will also be able to find inconsistencies in specifications and

design of the system, allowing the improvements in

specification and design of the system. Test cases generation

can be possible in two ways either manually or automatically.

Manual generation of test cases leads towards many problems

like time consuming, effort etc. Automatic generation of test

cases are benefited to software industry as it is responsible for

generating relevant and reliable test cases ensuring the

possible coverage criteria.

2.2 Software Requirement Specification

Software requirement specification is one of the most

important components of software. This component includes

all requirements specified by the users. This component is

prepared after the requirement gathering phase of the software

development life cycle. This component can also be serving

as a legal document. Functional requirement specified in the

SRS is of major concern. The SRS documents contain the

entire necessary requirements that are needed for the

development of any software project. Complete understanding

of the product being developed or to be developed is required

to better obtain the requirements from thee customers or

users. And this can be achieved by having detailed and

continuous meeting between project team and customer.

2.3 UML Diagrams

Use case diagram is a one of the simple diagram of the UML.

Use case diagram mainly shows the interaction of different

users with the system. Use case diagram associates possible

functionality of the system with its appropriate user.

In use case diagram users are represented as an actor and the

numbers of functions are represented as a use cases. An actor

has number of functions to be performed. Use case diagram is

used to associate each with their corresponding appropriate

functions.

Table 1. Control Nodes of Use Case Diagram

Names Symbols Used Description

Actor

It is a stick
persons which

represents the

various types of
users of the

system

Use case It is of oval
shaped which is

used to represents

the various

functionality of

the system

Association

It is an arrow

which is used to
provide

association

between actors
and use cases

Subsystem It is used to

occupy the all the

use cases of the
system

Include

It is used to

provide

association
between different

use cases which

have been include
by the use case

Extend

It is used to

provide
association

between use case

which are
extended

Activity diagram provides the graphical representations of

different stepwise activities carried in a system. Activity

diagrams depict the complete flow of the system. In activity

diagram all activities are arranged in a stepwise manner so

that each task can be easily executed. Different symbols used

in activity diagrams are represented as below.

Table 2. Control Nodes of Activity Diagram

Names Symbols used Description

Start

It is start symbol

which represents

start of the activity

Action node

Action node is

used to represents

the every action

Arrow

Arrow symbol is

used to show the

activity moving

from one action to

another

Decision node

Decision node

contains one

incoming and

multiple outing

nodes

Merge node

Merge node

contains multiple

incoming nodes

and one outgoing

node

Fork

Fork node is used

to split the activity

 into multiple parts

Join

Join node is used

to join the multiple

activities

Final node

Final node

indicates the end

point of the

activities

<<subsystem>>

International Journal of Computer Applications (0975 – 8887)

Volume 124 – No.5, August 2015

17

3. RELATED WORK
Test cases are mostly generated from activity diagram but

there are also some other alternatives available for the

generation of functional test cases.

Noraida Ismail et al. [5], presented an approach for generation

of test cases from the use case diagram based on specification

based testing. Test cases from use cases are driven

automatically in this approach. This approach mainly

considers two steps i.e. generation of use case diagrams from

the software requirement specification of the system and then

generating test cases from the use case diagram.

Ajay kumar jena et al. [6], presented an approach for the

generation of test cases from the activity diagram which is

design based testing. Test cases from the activity diagrams are

generated by using the coverage criteria method. This paper

has considered the case study of ATM cash withdrawal and

generated test cases are further optimized sing genetic

algorithm.

Andreou et al. [7], presented an approach for the generation of

test data using data flow graph. This paper proposes the

integrated approach of data flow module with existing testing

framework. The performance of this approach is tested on the

basis on number of different samples of programs having

different size and complexity.

Nebut et al. [8], presented an approach for test case generation

by considering the UML use case diagram. It also addresses

the problems associated between major views and execution

of test cases. This approach uses the statement coverage

criteria for test cases development. This approach is divided

into two parts i.e. handling high levels concerns and data

complexity is taken into account with the use case scenarios.

Kundu et al. [9], the main scope of this paper is to consider

use case as a base for the generation of test cases. This

approach has used the activity path coverage criteria for the

generation of test cases. This approach is also able to handle

the faults like synchronization and loop faults.

Tripathy et al. [10], presented an approach for the generation

of test cases with the togetherness of UML activity diagram

and Sequence diagram. Activity graph from the activity

diagram and sequence graph from the sequence diagrams are

derived first and these theses are integrated together to form a

new graph and then traversing is applied on that graph for the

generation of test cases.

Mingsong et al. [11], presented an approach for test case

generation using activity diagram by considering a design as a

specification. Rather than generating test cases from activity

diagram, it is using some randomly generated test cases based

on certain coverage criteria.

From the previous work it is concluded that the most of the

work is done in the field of design based testing by using the

activity diagrams. Test cases generation from the specification

based testing is very important as it disclose the specifications

problems and responsible for the delivery of software with its

complete specifications.

It is also observed that no work of automated analysis of

software requirement specification has been done. And also

there is no automated framework for the generation of use

case diagrams. Use case diagrams are manually drawn by

users in various UML tools.

4. PROPOSED FRAMEWORK
An approach is introduced to perform the specification based

testing to unveil the specifications problems in the system.

This approach mainly deals with the automated analysis of

software requirement specification to find the appropriate

input for the use case diagram. As use case diagrams needs

input like various actors and use cases, our motive is to find

the actors and use cases from SRS automatically. Another

goal of our approach is to automatically generate the use case

diagram from the refined input generated from the SRS. Then

automatically generated use case diagram are used to generate

the activity diagram. Hence functional test cases from activity

diagrams are created.

4.1 Proposed Framework
A framework that we are proposing will work as mentioned

below and the framework is shown in Fig. 1:

i. Analyze the software requirement specification (SRS) to

find the appropriate use cases and actors. Analysis of

SRS is of two types automated analysis and manual

analysis

ii. In automated analysis, two types of use case diagrams

are generated i.e. fully automated and semi-automated.

iii. In manual analysis complete user based input use case

diagrams are generated.

iv. Users have to choose the each way to generate use case

diagrams.

v. Analyze the use case diagrams developed by fully

automated, semi-automated and complete user based

input approach.

vi. Develop one or more Use Case Activity Diagram (UAD)

based on fully automated, semi-automated and complete

user based input approach.

vii. Checks the uniformity of the UADs.

viii. Perform parsing of XML files of different UADs.

ix. Generate Use Case Activity Dependent Table (UADT)

based on UADs.

x. Generate Use Case Activity Dependent Graph (UADG)

based on UADTs.

xi. Apply traversing technique to generate functional test

cases.

xii. Develop one or more functional test cases.

xiii. Finally compare the results of all three approaches.

4.1 Analysis of Software Requirement

Specification
Software requirement specification for a software application

is analyzed by automatically and manually. SRS is analyzed

to find the input for the use case diagrams. So functional

requirement of the SRS is analyzed to obtain the appropriate

input i.e. use cases and actors for the use case diagram by

both way.

4.2 Generation of Use Case Diagrams
Use case diagrams are generated by three ways i.e. fully-

automated, semi-automated and complete user based input

approach. In fully automated approach, use case diagram are

generated from the input provided by automated analysis of

SRS. In semi-automated approach, use case diagrams are

generated from the input provided by automated analysis of

SRS but with human invention. In complete user based input

approach, use case diagrams are generated from the input

provided by manual analysis of SRS.

International Journal of Computer Applications (0975 – 8887)

Volume 124 – No.5, August 2015

18

4.3 Analysis of Developed Use Case Diagram
Analysis of use case diagram involves the manual checking of

use case diagram generated by all three approaches. In this

software engineer or user will check the use case diagram to

ensure that whether it is according to the specified

requirements. If any changes found, then use case diagrams

are modified to ensure the better covering of functional

requirements mentioned in the system specification.

Fig. 1: Proposed Framework

International Journal of Computer Applications (0975 – 8887)

Volume 124 – No.5, August 2015

19

4.4 Developing Use case Activity Diagrams

(UAD)
Activity diagrams from the use case diagrams are generated.

Various tools can be used to generate the activity diagrams.

Activity diagrams clearly depict the flow of one activity to

another activity to easily understand the working of system.

4.5Checking the uniformity of UAD
Uniformity of activity diagrams are checked to ensure the

flow of one action to another. Consistencies of modules are

checked in this step. It ensures that all units of activity

diagrams are placed at their position and according to their

roles. Once the uniformity is checked, XML files of activity

diagrams are generated.

4.6 Parsing of XML Files
Parsing of XML files of different activity diagrams are

performed to find the relevant information needed for the

generation of Activity Dependent Table (ADT), Activity

Dependent Graph (ADG) and for traversing the graph.

4.7 Activity Dependent Table (ADT)
ADTs are generated from parsed content provided by the

parsing step. Activity Dependent Table contains the

information like vertex name, dependency nodes, dependent

nodes, in degree and out degree of the activity diagram.

4.8 Activty Dependent Graph (ADG)
Activity Dependent Graph is of tree like structure which has

one root node and all other nodes are child nodes. ADT is

defined as G (V,E) where G represents the graph, V

represents the vertices i.e. set of nodes (activities) and E

represents the edges i.e. flow from one activity to another.

4.9 Traversing Technique
Depth First Search (DFS) algorithm is used to traverse the

ADG to show all possible functional test paths in the ADG.

DFS ensures the proper coverage of all paths available in the

graph. DFS starts traversing the graph with one as a root node

and traverse it as far as possible before backtracking

4.10 Developing Functional Test Cases
By using all the functional test paths, functional test cases are

generated. Test case represents some conditions, by

following these conditions tester checks that whether a

software system or one of its modules is working accordingly

as it was specified to do.

4.11 Comparing the Results
Functional test cases generated by all three approaches are

compared to measure the number of functional test cases

produced. Results are also compared to know which approach

is covering all specifications specified in the SRS. And also

time complexities of these approaches are analyzed.

5. CONCLUSION AND FUTURE WORK
Functional test cases from software requirement specification

are generated by developing use case diagram and activity

diagram. Automation approach for the analysis of SRS,

generation of use case diagram and generation of functional

test cases has been introduced. Automation results in saving

maximum effort consumed in analysis of SRS and drawing of

use case diagram manually in any UML tool or by using pen

or paper. Automation also results in saving cost included in

the testing of the software application. Mostly in code based

testing, we are able to find errors in coding or logics, we are

not able to ensure the covering of all requirements specified in

the SRS. Our automation approach ensures the maximum

coverage of all requirements specified in the SRS. Hence

possibility of reliable system delivery to the customer

increases. An approach for automated analysis of SRS must

be improved to identify the composite words. And this

approach can be further extended for the other UML

diagrams.

6. REFERENCES

[1] Isabella, A., and Emi Retna. "Study Paper on Test Case

generation for GUI Based Testing." arXiv preprint

arXiv:1202.4527 (2012).

[2] Prasanna, M., et al. "A survey on automatic test case

generation." Academic Open Internet Journal 15.part 6

(2005).

[3] Young, Michal. Software testing and analysis: process,

principles, and techniques. John Wiley & Sons, 2008.

[4] Gill, Nasib Singh. Software engineering: software

reliability, testing and quality assurance. Khanna Book

Publishing, 2007.

[5] Kundu, Debasish, and Debasis Samanta. "A Novel

Approach to Generate Test Cases from UML Activity

Diagrams." Journal of Object Technology 8.3 (2009):

65-83.

[6] Jena, Ajay Kumar, Santosh Kumar Swain, and Durga

Prasad Mohapatra. "A novel approach for test case

generation from UML activity diagram." Issues and

Challenges in Intelligent Computing Techniques

(ICICT), 2014 International Conference on. IEEE, 2014.

[7] Tripathy, Abinash, and Anirban Mitra. "Test Case

Generation Using Activity Diagram and Sequence

Diagram." Proceedings of International Conference on

Advances in Computing. Springer India, 2012.

[8] Nebut, Clementine, et al. "Automatic test generation: A

use case driven approach." Software Engineering, IEEE

Transactions on 32.3 (2006): 140-155.

[9] Mingsong, Chen, Qiu Xiaokang, and Li Xuandong.

"Automatic test case generation for UML activity

diagrams." Proceedings of the 2006 international

workshop on Automation of software test. ACM, 2006.

[10] Andreou, Andreas S., Kypros A. Economides, and

Anastasis A. Sofokleous. "An automatic software test-

data generation scheme based on data flow criteria and

genetic algorithms." Computer and Information

Technology, 2007. CIT 2007. 7th IEEE International

Conference on. IEEE, 2007.

IJCATM : www.ijcaonline.org

