International Journal of Computer Applications (0975 - 8887)
Volume 125 - No.l, September 2015

Noise Tolerant Stochastic Logic Gate Circuits
Synthesis using Genetic Algorithms

I. Neri

NiPS Laboratory, Dipartimento di Fisica e Geologia

Universita degli studi di Perugia
[-06010 Perugia, Italy

ABSTRACT

In this paper we propose a method for synthesis of combinational
networks using non conventional logic gates. The logic compo-
nents considered are Stochastic Logic Gates (SLGs) able to change
their logic functionality by means of a single control parameter
and the environmental level of noise. SLGs are able to adapt their
computed logic function depending on the environmental condi-
tions. Circuits composed of SLGs are thus sensitive to changes
in the environment which alter the computed logic function. We
propose a solution for the synthesis of SLGs combinational net-
works able to produce a network operating fault tolerant in differ-
ent environmental conditions, i.e. different levels of noise. Given
a description of the problem, in form of a truth table, the syn-
thesis of the network is performed by means of genetic algo-
rithms. The proposed solution is tested with a half-adder and com-
pared to the optimal solution found with an exhaustive search.

General Terms

optimization, circuits, noise

Keywords

stochastic logic gate, fault tolerant, genetic algorithm, non conven-
tional computing

1. INTRODUCTION

In Logic Stochastic Resonance (LSR), bistable or multistable non-
linear dynamical system can function as a logic gate or mem-
ory device by exploiting the constructive interplay of noise and
nonlinearity[1} [2]. Similarly to the well-known Stochastic Reso-
nance (SR) concept [3| 4], the dynamical system enables to fulfil
correct logical operations only for a non-vanishing noise floor and
if the noise level is in an optimum range. A particular application of
LSR are Stochastic Logic Gates. The most interesting characteristic
of SLGs is the ability to perform correct logic functions in a noisy
environment and the morphing of the logic function by tuning the
potential landscape of the device[l]] or the noise[2]. While the first
can be chosen already in the design phase or changed before any
logic operation, the latter depends strictly on the logic gate opera-
tion environment which in turn may change over time, e.g. due to

F. Hartmann

Technische Physik and Wilhelm Conrad Rontgen Research
Center for Complex Material Systems, Physikalisches Institut

Universitidt Wiirzburg
Am Hubland, D-97074 Wiirzburg, Germany

-2.75 -3.00

Fig. 1: Colour plots of the output current (logic output) versus V gl and V gr
(logic inputs) for different values of noise (o) and control parameter (V gb).
The corners of the white rectangles show the position of different side gate
input-voltage configurations where V gl and V gr take either the high or the
low level. High and low are defined to be OV and 0.6V respectively. The
output current levels are defined to be high if / > 15nA and to be low if
I < 15nA [13].

local heating effects, and thus will modify the logic functionality of
the gate.

In this work we present a method, based on evolutionary strategies,
to synthesize a combinational logic network composed by SLGs
fault tolerant to the environmental noise. Similar approaches have
been used for evolving 100% functional circuits [3} [6} [7, 8] with
focus on fault tolerance [9} |10} [L1} [12].

2. EVOLVABLE HARDWARE

A particular example of SLGs is the one presented in Ref. [13] and
in the simulated experiment presented here, we are considering this
particular gate as a building block for the combinational network.
In such SLGs the logical function performed by the gate does not
simply depend on the noise level (o) but also on a second control
parameter (V gb). Considering the combination of the two a large
set of logic functionalities can be performed as depicted in[Figure 1}
In fact the device enables the realization of logic AND, OR, NAND
and NOR gates, among others. Using this kind of SLGs, the control
parameter is a property that can be set in the fabrication/production
phase while the noise may vary with environmental conditions.

pet H [| pes H [| peo M [| PE13 —
pe2 | [| pes [| PE10 [| PE14 |—
INPUTS
OUTPUTS
PE3 || pez H || pert | [] PE1s [
pes - || Ppes | || PEt2 H || PEt6

Fig. 2: Combinational network composed by reconfigurable processing el-
ements (PEs). In this case the maximum number of PEs in the network is
16.

We envision an optimal scenario in which a network is completely
fault tolerant even when the noise changes. To achieve this re-
sult it is necessary to design the logic network to be resilient to
the noise parameter. For conventional logic gates there are several
techniques to synthesize a combinational network in order to solve
a specific problem, e.g. the Karnaugh map[|14]. Considering non-
conventional logic gates plus noise, it is almost impossible to obtain
an explicit solution for the problem. Still, optimization techniques
can be used to find a near-optimal solution to the problem.

For practical purposes it is useful to define an environment in which
a combinational network made by SLGs is evaluated and designed.
The logic architecture is evaluated considering a structure compara-
ble to a virtual reconfigurable circuit (VRC) as used on FPGAs. The
VRC is composed by an arbitrary number of processing elements
(PEs). The general structure of the VRC is presented in[Figure 2}
Each PE consists of two input selectors determining the input of the
PE and thus the connection among PEs. A selector determines the
logic function computed by the PE. [Figure 3|represents the internal
structure of a generic PE.

Notice that in the presented structure the inputs to the PEs of the
first column are the problem inputs while the ones of the second
column can access the problem inputs and the output of the first
column, and so on. The outputs of the logic circuit can be any arbi-
trary set of PEs outputs. In order to use the optimization software
to synthesize networks composed of SLGs presented above, instead
of using the classical logic function (e.g. AND, OR, and so on), we
define the following logic blocks:

—SLG_255;
—SLG_275;
—SLG_300;
—SLG_330;

corresponding to the SLGs for different values of the control pa-
rameter V gb, i.e. the columns of The suffixes 255, 275,
300 and 330 refer to the voltage of the control parameter (—2.55V/,
—2.75V, —3.00V and —3.30V respectively). Each logic block
may compute a different logic operation for different level of noise,
corresponding to the rows of The logic outputs of the
SLGs as function of inputs and noise levels are reported in[Table 1]

International Journal of Computer Applications (0975 - 8887)
Volume 125 - No.l, September 2015

INPUTS
AND
I Input A NAND
_____) OR
! I OUTPUT
! | Input B
! T
I NOT
[
[
b
() 1
[I
[1
[1
[1
() 1
() 1
INPUTS FUNCTION
SELECTOR SELECTOR

Fig. 3: Internal structure of a processing element. The processing element
has a selector for the logical function to compute and two selectors for the
inputs.

Table 1. : Logic outputs of the SLGs considered, as function of inputs and
noise level.

o Iop | Iy | SLG255 | SLG275 | SLG_300 | SLG_330
HIGH | 0 0 1 1 0 0
HIGH | 0 1 0 1 1 0
HIGH | 1 0 0 1 1 0
HIGH 1 1 0 0 1 1
LOW 0 0 0 1 0 0
LOW 0 1 0 0 1 0
LOW 1 0 0 0 0 0
LOW 1 1 0 0 0 1

3. SYNTHESIS BY GENETIC ALGORITHMS

The synthesis of the combinational network is performed using op-
timization techniques inspired by nature, in particular we used Ge-
netic Algorithms (GAs), in which individuals (i.e. candidate logic
circuits) compete for reproduction. The individuals that fit better
in the environment survive, reproduce, and thus transmit their ge-
netic signature to the next generation. Eventually the chromosome
of two individuals can be merged and mutated with some prob-
ability. In particular the GA evolution can be summarized in the
following steps[15]:

(1) Read the problem definition.

(2) Generate an initial population of N individuals. Each individ-
ual defines a candidate solution for the problem encoding the
structure of the solution in its chromosome.

(3) Evaluate the fitness of each individual in relation to the fitness
function and the problem definition.

(4) Select candidate individuals for reproduction based on their fit-
ness.

(5) Reproduction performing crossover operation and mutation
operation.

(6) Generated new individuals form the next generation.
(7) Iterate from step 3.

The evolution can be halted once a particular condition is reached
(e.g. maximum number of iteration reached or individual with tar-
get fitness found). In the following sections specific definitions of
the algorithm for synthesis of logic circuit made by SLGs are given.

3.1 Problem definition

The target problem is defined by the truth table of the desired logic
circuit. The number of the input and output of the truth table are
mapped on the number of input and output of the VRC. In addition
the number of rows and columns of the VRC is defined limiting the
maximum number of PEs, and thus SLGs, to be used.

3.2 Genetic representation

Each individual is a realization of a VRC that defines the chro-
mosome of the individual. Each PE represents a gene, defining the
interconnection among PEs and the logic function performed.

3.3 Initial population

The initial population consists of a set of /N randomly generated
individuals, selecting with uniform distribution the logic function
and the topological structure of the network. Generally a large pop-
ulation size will result in a faster convergence, measured in number
of generations. This will incur in a larger computational cost. The
right selection of the population size optimizes the overall compu-
tational time.

3.4 Fitness evaluation

The selection of the fitness function is a critical point in GA op-
timization. A good fitness function is meant to map the objective
to a fitness value to be associated to each individual. The objective
of the problem is to find a topology of SLGs able to satisfy the
truth table considering to operate the logic network at two levels of
noise. Moreover solutions that use fewer gates have to be preferred,
reducing the complexity of the system and its energy consumption.
In particular the fitness function is defined as:

F#correct_outputs
2 X #total_outputs

where #correct_outputs is the number of correct outputs com-
puted for both level of noise, and #total_outputs is the number of
outputs defined by the truth table. Finally #used_gates is the num-
ber of PEs involved in the computation and w is a weight defining
the importance of this parameter, in the presented case w = 0.001.
The fitness function saturates to 1 when all the outputs are correct
and no SLG is used.

f=

— w * #used_gates

3.5 Selection

The selection procedure is responsible for selecting the individual
to be used to generate the next generation. The selected individu-
als can then be modified by specific genetic operations. In the pre-
sented work we used two different selection mechanism:

—Rank Selection
—Roulette Wheel Selection

For both selection methods the chances that individuals with higher
fitness are selected are enhanced. In particular in the Rank Selec-
tion method the individuals are sorted by fitness and the selection
probability is proportional to the rank of the individual in the sorted
list[16]. In the Roulette Wheel Selection the probability of selec-
tion is proportional to the fitness of the individual giving a lesser

International Journal of Computer Applications (0975 - 8887)
Volume 125 - No.l, September 2015

Parents

Fig. 4: Single-point crossover procedure. The VRC of the new individuals
are composed by part of the PEs of one parent and part from the other
parent.

selection pressure. Notice that a very high pressure may lead to a
convergence to a sub-optimal solution [[17]. In our case both selec-
tion methods have been used but lead to no substantial differences.

3.6 Genetic operations

Reproduction of new individuals is carried out applying two ge-
netic operations to the selected parents. The first operation is the
crossover in which two parents are selected and eventually, with
a given probability of 0.95, the two chromosome are mixed. The
implemented crossover is a single point crossover consisting in di-
viding the chromosome in two parts and assign to a new individual
the first part of the chromosome of one parent and the second part
of the chromosome of the second parent. Vice-versa for the other
new individuals[[16![18]]. The chromosome is divided at PE level as
illustrated in[Figure 4]

The second genetic operation is the mutation. Mutation consists in
randomly generate a new value for a specific property of a gene.
In particular mutation operations permit to explore a larger space
of parameter and eventually reintroducing a gene value lost during
the selection procedure(16]]. The mutation operation is usually per-
formed with a low probability, in the presented case the probability
of mutation is set to 0.15. The mutation operation occurs inside the
PE eventually changing one of the input of the PE or its logic func-
tion. Moreover the mutation can occur at output level selecting as
output of the problem the output of a different PE, or eventually
directly one input.

4. SYNTHESIS AND SIMULATION RESULTS

We will consider evolving a circuit made by SLGs able to correctly
compute the half-adder logic operation. The truth table of the half-
adder is reported in

The desired output logic circuit is thus a 2-inputs and 2-outputs cir-
cuit. While using traditional logic gates the solution to the problem
is trivial (i.e. a XOR gate and a AND gate for the sum and carry
respectively). No simple solutions are easy to find using the SLGs
defined above, especially considering the requirement to work with
both level of noise.

For the optimization procedure the maximum number of PEs to be
used was set to 25, arranged in a matrix of 5 x 5. The population
size was set to 30 individuals.

(b) Logic network functionality with low

(a) Synthesized logic network. noise.

International Journal of Computer Applications (0975 - 8887)
Volume 125 - No.l, September 2015

NAND_20
0110

(c) Logic network functionality with high
noise.

Fig. 5: Synthesized fault tolerant half-adder using SLGs by genetic algorithms.

Table 2. : Truth table of the half-adder. I and I; are the inputs while S and
C are the sum and carry output bits respectively.

Ip | I | S| C
0 0 0] 0
0 1 1 0
1 0 1 0
1 1 0 1

After 3000 generations the algorithm converges to a correct solu-
tion using 9 SLGs, represented in The suffix at the end
of the SLG name reefers to the position occupied in the VRC, and
will be used to identify the gate in the following as #XX.

The two logic functions computed for the two levels of noise are
shown in [Figure Sb|and [Figure Sc|for the lower and higher level of
noise respectively. The logic function is presented along with the
computed output in respect to the relative inputs. Analysing the par-
ticular case shows that two SLG_330 gates (#5 and #6) were used in
cascade. [Table T|shows that SLG_330 acts as an AND gate for both
levels of noise and thus the two AND gates connected in cascade
are redundant and one of them can be removed reducing the num-
ber of needed gates to 8. Another peculiar feature of the proposed
solution is the use of the gate SLG_255 (#2). For the lower level of
noise it does not compute a logic operation and outputs are always
zero (see[Figure 3b). However for higher level of noise it acts as a
NOR gate and becomes useful for the computation (see [Figure 5c).
In particular it is interesting to notice that part of the network is not
useful for the computation in the low noise scenario while it is ac-
tive in the high noise scenario or vice-versa. For instance in the low
noise case the path up to the AND gate (#10) is useless,
in fact it produces always O as output. However this port become
important in the high noise level computing an output useful for the

Fig. 6: Optimal solution for the half-adder using SLGs. Overall 6 logic ele-
ments are needed to realize a complete fault tolerant half-adder.

OR gate (#14), while the gates #11 and #12 become useless since
their output is a constant 1.

As it happens with optimization techniques, the solution may be
sub-optimal, and may correspond to a local minimum of the fitness
function. To identify the optimal solution, considering the same set
of SLGs, an exhaustive search have been performed. The optimal
solution, consisting of 5 SLGs gates for the sum bit, and one SLG
gate for the carry bit. The optimal solutions is shown in[Figure 6|

As expected, the optimal solution differs from the one found with
the optimization algorithm, however for larger problems the use of
exhaustive search is not feasible since the complexity of the prob-
lem grows exponentially with the number of gates involved. In fact
even with today’s high-powered computer the use of an exhaustive
search to find an optimal solution can be prohibitively in terms of
time even for a small problem. GAs are usually able to find a near-
optimal solution exploring only a small subset of possible solution,
reducing the computational time required.

The ability of a combinational circuit to be more robust to the noise
takes its toll, usually in complexity or number of logic gate used.
In fact, as mentioned, the last result found uses 6 gates instead of
2 in the traditional XOR/AND configuration. However, the trade-
off between the number of gates, complexity and error has to be
evaluated depending on the specific requirement of the application,
energy constrains, and required reliance to noise. In the presented
approach the desired trade-off can be selected a-priori setting the
weights for each desired constrain in the fitness function.

5. CONCLUSIONS

In this work we proposed a genetic algorithm to create logic archi-
tectures with complete fault tolerance to the environmental noise
by using stochastic logic gates. As test bench we considered a half-
adder circuit. The found solution enables computation in a varying
noise environment. The optimization is performed in order to max-
imize the functionality of the network and minimize the error and
the energy consumption, reducing the number of gates used. The
proposed solution can be used to synthesize logic architecture, us-
ing as building blocks non conventional logic gates, where classical
synthesize techniques fail.

6. ACKNOWLEDGEMENTS

This work was supported by the European Commission under
Grant Agreement No. 318287, LANDAUER and Grant Agreement
No. 611004, ICT-Energy.

7. REFERENCES

[1] K Murali, Sudeshna Sinha, William L Ditto, and Adi R Bul-
sara. Reliable logic circuit elements that exploit nonlinear-

ity in the presence of a noise floor. Physical review letters,
102(10):104101, 2009.

[2] F Hartmann, A Forchel, I Neri, L Gammaitoni, and
L Worschech. Nanowatt logic stochastic resonance in
branched resonant tunneling diodes. Applied Physics Letters,
98(3):032110, 2011.

[3] Kurt Wiesenfeld and Fernan Jaramillo. Minireview of
stochastic resonance. Chaos: An Interdisciplinary Journal of
Nonlinear Science, 8(3):539-548, 1998.

[4] Luca Gammaitoni, Peter Hinggi, Peter Jung, and Fabio
Marchesoni. Stochastic resonance. Reviews of modern
physics, 70(1):223, 1998.

[5] Julian F Miller, Peter Thomson, and Terence Fogarty. Design-
ing electronic circuits using evolutionary algorithms. arith-
metic circuits: A case study, 1997.

[6] Carlos A Coello, Alan D Christiansen, and Arturo Hernandez
Aguirre. Automated design of combinational logic circuits
using genetic algorithms. In Proceedings of the International
Conference on Artificial Neural Nets and Genetic Algorithms,
pages 335-338, 1997.

International Journal of Computer Applications (0975 - 8887)
Volume 125 - No.l, September 2015

[71 Ahmed T Soliman and Hazem M Abbas. Combinational cir-
cuit design using evolutionary algorithms. In Electrical and
Computer Engineering, 2003. IEEE CCECE 2003. Canadian
Conference on, volume 1, pages 251-254. IEEE, 2003.

CK Vijayakumari, P Mythili, Rekha K James, and CV Anil
Kumar. Genetic algorithm based design of combinational
logic circuits using universal logic modules. Procedia Com-
puter Science, 46:1246-1253, 2015.

Didier Keymeulen, Adrian Stoica, Ricardo Zebulum, Yili Jin,
and Vu Duong. Fault-tolerant approaches based on evolvable
hardware and using a reconfigurable electronic devices. In
Integrated Reliability Workshop Final Report, 2000 IEEE In-
ternational, pages 32-39. IEEE, 2000.

[10] P Nirmal Kumar, S Anandhi, and J Perinbam. Evolving vir-
tual reconfigurable circuit for a fault tolerant system. In Evo-
lutionary Computation, 2007. CEC 2007. IEEE Congress on,
pages 1555-1561. IEEE, 2007.

[11] Kyung-Joong Kim and Sung-Bae Cho. Automated synthesis
of multiple analog circuits using evolutionary computation for
redundancy-based fault-tolerance. Applied Soft Computing,
12(4):1309-1321, 2012.

[12] Hui-Cong Wu. Fault tolerant circuit design using evolutionary
algorithms. Journal of Computers, 9(1):95-100, 2014.

[13] P. Pfeffer, F. Hartmann, S. Hofling, M. Kamp, and
L. Worschech. Logical stochastic resonance with a coulomb-
coupled quantum-dot rectifier. Phys. Rev. Applied, 4:014011,
Jul 2015.

[14] M. Karnaugh. The map method for synthesis of combina-
tional logic circuits. American Institute of Electrical Engi-
neers, Part I: Communication and Electronics, Transactions
of the, 72(5):593-599, Nov 1953.

[15] Thomas Bick. Evolutionary algorithms in theory and prac-
tice: evolution strategies, evolutionary programming, genetic
algorithms. Oxford university press, 1996.

[16] Kit-Sang Tang, Kim-Fung Man, Sam Kwong, and Qun He.
Genetic algorithms and their applications. Signal Processing
Magazine, IEEE, 13(6):22-37, 1996.

[17] Pinaki Mazumder and Elizabeth M Rudnick. Genetic algo-
rithms for VLSI design, layout & test automation. Prentice
Hall PTR, 1999.

[18] David E Golberg. Genetic algorithms in search, optimization,
and machine learning. Addion wesley, 1989, 1989.

(8

—

[9

—

	Introduction
	Evolvable hardware
	Synthesis by genetic algorithms
	Problem definition
	Genetic representation
	Initial population
	Fitness evaluation
	Selection
	Genetic operations

	Synthesis and simulation results
	Conclusions
	Acknowledgements
	References

