Symmetrical Slot on C-Shape Microstrip Patch for Tri-band Application

Madhavi Bagal
M. S. Bidwe Collage of Engineering, Latur

S.S. Killarkar
M. S. Bidwe Collage of Engineering, Latur

ABSTRACT
A new triple band microstrip patch antenna is presented in this paper for wireless communication. By adjusting the dimension of ground plane and patch, its fractional bandwidth at primary resonance mode can increased sufficiently to achieve desired bandwidth of proposed antenna. In proposed design, it has been found that the symmetrical position of patch over ground plane have clear impact on overall antenna performance. Many antenna structures have been modeled to demonstrate the effects of these parameters on the resulting triple band response. We design antenna for (1.07-1.75GHz), (3.22-4.35) and (5.78-6.5GHz).

Keywords
Microstrip antenna, Dielectric Patch antenna, Length; Losses; strip width; strip length.

1. INTRODUCTION

In this paper we tested our design by using electromagnetic simulator HFSS. Researchers are focusing on how to design microstrip antennas for various band. Due to its advantages such as low-cost, small size low weight and capability to integrate with Microwave integrated circuits, the microstrip patch antenna is a very good candidate for integrations in applications such as wireless communication systems, mobile phones and laptops. In this paper a single C-slot microstrip antenna with two symmetrical strip (Figure 1) is designed and simulated for the frequency range of 0.5-7 GHz. This antenna presents an extension to the single C-slot antenna presented at LAPC 2009 [8, 9]. The proposed antenna has a gain of 3.8 dBi and presents a size reduction of 33% when compared to a conventional square microstrip patch antenna. Extensive simulation results using Advanced Design Systems by Agilent (uses the MOM method) will be presented.

2. PROPOSED DESIGN
The results of proposed triple band microstrip patch antenna verified in HFSS Simulator with optimization. The initial antenna is shown in Figure 1 and Figure 2. It consists of a single c-slot with two slot symmetrical to c-slot at the center of patch. Each end and placed within the patch [7]. The resulting antenna structure has the following parameters; the patch shape length \(W_p = 28.5 \text{ mm} \), and its width \(L_p = 24.5 \text{ mm} \). The size of the ground plane has been found to be of \(L_g = 40 \text{ mm} \) and \(W_g = 40 \text{ mm} \). The height of substrate is \(h = 1.5 \text{ mm} \) and dielectric constant \(e_r = 4.4 \). A 50 \(\Omega \) inset microstripline feed is attached to the microstrip and has a width \(W_1 = 2.6 \text{ mm} \) and length \(W_1 = 54 \text{ mm} \). The length and width of c-slot that is \(S_1 = 21 \text{ mm} \) and \(1 \text{ mm} \) respectively.

We will conduct a simulation study on the structure of Figure 1 by adjusting the dimension of slot placed above and below of c-shape slot that is \(S_1 \) and \(S_2 \). The resulting dimension of slot \(S_1 \) and \(S_2 \) after simulation antenna structure are 1.5mmx21 and 2mmx21mm respectively. Initially we put ground position for entire patch. As we reduce ground material, it is found that return loss is getting reduced from –9dB to –15dB. The ground substrate length on backside of patch is reduced and simulated for different dimension; it is observed that we get second (3.22-4.35 GHz) and third band (5.78-6.5GHz) with sufficient return loss, the resulting return loss responses obtained by reducing ground plane, we obtain optimized return loss as presented in figure 3. Further we simulated for different dimension of ground plane that is ground plane at front side of patch. Again we simulated for different dimension of ground plane to get optimized result, in this case it observed that we get first, second and third band with sufficient return loss, the resulting return loss presented in figure 4 and figure 5. From above result the finalized dimension of ground plane are, dimension of backside and front side ground plane are 40mmx43mm, 14mmx36mm respectively.

Figure 1. Proposed antenna design (Front side)
From figure 4 and figure 5, it is observed that, we get minimum return loss that is -45dB, -25dB and -35dB at 1.5GHz, 3.9GHz and 5.9GHz respectively.

However, triple-band responses are obtained with increased or decreased higher resonating bands. The effect of the width of ground has been demonstrated in Figure 3, Figure 4 and Figure 5. For larger values of the width of ground, the antenna offers a one-band resonant behavior, and the triple-band resonance occurs as the width is made smaller and approaches that of the reference antenna.

3. CONCLUSION
The design optimization of a dual slot patch antenna has been presented and discussed. It has been shown that with correct selection of slot dimensions on patch and shape of ground plane, a triple band frequency response can be achieved. With
this antenna, we get much improved bandwidth this design is obtained method, as a candidate for use for triple band that is (1.07-1.75 GHz), (3.22-4.35 GHz) and (5.78-6.5 GHz). The antenna has been modeled and its performance has been analyzed using a HFSS simulator. The proposed antenna has been found to possess a miniaturized size and a width making it suitable for compact size triple band applications. The simulated results of HFSS at 1.5 GHz is Return loss = -45 dB, at 3.9 GHz Return loss = -25 dB and at 5.9 GHz Return loss = -35. VSWR at 1.5 GHz is 2.01, Gain = 3.4 dBi at 1.9 GHz Efficiency = 90%.

4. REFERENCES

5. AUTHOR PROFILE
Madhavi Bagal is pursuing Master of Engineering in Electronics and communication from M. S. Bidwe College of Engineering Latur. She has received B. E. in Electronics and communication from M. S. Bidwe College of Engineering Latur. She is currently working as lecturer in VDF School of polytechnic Latur, India. Her research area is antenna design.

S. S. Killarikar is currently Associate Professor in the Department of Electronics and communication with 25 Years of teaching experience at M. S. Bidwe College of Engineering Latur. She has received Master of Engineering in Electronics from S.G.G.S. Nanded, India. Her area of Specialization is Computer Technology.