
International Journal of Computer Applications (0975 – 8887)

Volume 126 – No.11, September 2015

1

De-Mystifying Data Testing and Applying Automation

Pad Balasubramanian
Senior Principal Consultant
Center of Excellence Team
Syntel Ltd, Chennai, India

Prasanth Malla
Automation Architect

Center of Excellence Team
Syntel Ltd, Chennai, India

ABSTRACT
Being Agile has become a norm rather than a special need. To
stay Agile in today’s world requires significant thought and
innovative solutions. The testing industry has matured during
the past decade with hundreds of open source tools and
frameworks, specifically in the area of automation. QA teams
have significantly benefitted by this evolution, enabling them
to satisfy the demand of being Agile throughout the lifecycle
and stay at par with technology advancements.

One of the most important objectives of data-testing is to
recommend the corrective measures the back-end integration
teams need to introduce in the development life cycle
(SDLC). Data validation definitely plays an important role
and there are lots of techniques and tools available in the
market. However, end-to-end automation penetration is
comparatively low in back-end data testing and ETL test
automation since the data transformation predominantly
happens through ETL processes on major enterprise systems.
There is a clear market and industry demand for automation in
data testing. This space is gaining importance with the sole
reason being quantity (size) to be handled along with the
quality of data.

This paper explains the essentials of data testing strategy -
how data quality and data validation checks play an important
role; where and how to bring-in automation; and finally the
method for arriving at faster, accurate root-cause analysis. It
can be argued that data quality checks are implicitly covered
as part of validation, however it is always recommended to
address the problem at the source rather than at the
destination. According to analyst findings in public domain,
significant revenue wastages are reported due to poor data
quality.

The approach defined in this paper will benefit QA-testing
teams involved in back-end data testing. It will improve their
understanding and enable them to apply correct techniques as
they move forward. Automation for data-testing is considered
only for people with a technical background. A proper
understanding of what exactly happens at back-end once data
is processed from front-end, will enable a non-technical
person to understand, enjoy, and appreciate the benefits of
automation.

Keywords
Data quality check, data validations, ETL test automation,
Agile development, third party systems, data source, and data
destination.

1. INTRODUCTION
“Upstream inefficiency or issues induces defects in
downstream systems and applications.” Development teams
spend more time and effort to identify the source of the defect
rather than fixing it. To understand this statement better, let us
go through the below illustrated example:

Fig 1: Back-end Data Transfer Workflow

 In the above example, defects at the downstream systems like
reporting and client portals are typically attributed to factors
at the respective application layers or the ETL batch jobs.
There is yet another key cause.

Typical data-testing happens between the source and target
DB. For instance, if there is a valid defect in this process, the
initial reason can be attributed to the ETL batch jobs that
moves the data from source to target. However, there could be
a scenario where the actual root cause could be at the data
origin - source of the data originated from the upstream
systems.

A defect is a defect regardless of the cause. It is important to
have a mechanism to identify the root cause in a short time
frame to get an instant fix. This can be achieved only if the
approach of the testing strategy, specifically on back-end data
testing, is well thought through taking into consideration the
data flow between various systems. The below sections
explain the key steps involved - where and how automation
can be introduced in the overall data testing life-cycle.

2. IMPORTANCE OF SOURCE DATA

CORRECTNESS
Data testing should not be assumed as data validation testing
or data cleansing. A relook at fig 1 shows that the first step
should be to ensure data correctness of the input source data.
Large enterprise systems, especially in the banking and
insurance domain, have heterogeneous data source formats:
csv, json, xml, excel, and .dat. Large enterprises also have
huge volumes of record-sets and sizes. Moreover, the format
and the content structure are governed by the rule-dictionary
agreed upon between the systems. The origin source can be
from a third-party provider or an in-house
application/provider. A typical example being daily credit-
card transactions summary statement. In an ideal business
scenario, the systems involved in sending and receiving have
a common data-exchange protocol or rule dictionary.

However, in the current agile world, no situation can continue
to remain “ideal” as changes are bound to happen and it can
occur anywhere. It cannot be assumed that the input data-
source is 100% accurate at all times. This statement is even
more valid in pre-prod environment. There can be several
external/internal factors due to which there could be
deviations in the source data with respect to the pre-defined
format dictionary. The current trend in automation for ETL-
testing is more towards the final phase of the journey which is

Upstream

Systems
Source Target

Source Inputs

Landing area

ETL / Batch

Jobs

Reporting

Client

Portal

Mobile

Apps

International Journal of Computer Applications (0975 – 8887)

Volume 126 – No.11, September 2015

2

data validation. It will be interesting to see how automation
can be leveraged for earlier phases that is, data-quality checks.

2.1. Automated Data Quality Check
It is indeed very demanding to design a system to handle the
heterogeneous data sources. With the advent of complex
online systems, e-commerce transactions, and so on, the
diversification is multifold. There are no standard bodies to
govern the structure of business data. Organizations define
their formats depending on the technology of their IT
landscape. The source can vary from industry standard XML
to legacy text file formats. Hence any attempt to introduce
automation must consider these facts and be adaptable to
scale.

Fig 2: Automated Data Quality Checks

The above figure explains the process with a rule-configurable
validation engine, enabling automated data quality checks.
The validation rule engine is configured with the expected
data-content’s range/type/formats. The configurations can be
in multiple sets, as the inputs can come from different input
streams or systems. The engine should be able to accept
heterogeneous inputs as described earlier. Some of the sample
parameters to be considered are listed below:

[1] Fixed validations: Transactions should have few
mandatory fields like originating party, third party,
transaction date, amount, currency, transaction ID, and
values for the same to be in line with the defined format
value.

[2] Validation with external references: Transaction charges
should be subjective to the third party based on the
transaction amount and transaction type.

[3] Contextual reference validations: A field within a given
record can have dependency on another field in the same
record. For example, in case of a card transaction
payment, the card number field is mandatory and the
card number field value should be as per the definition.
In the event of the transaction being an online direct
transfer mode of payment, the card number field could be
optional. The card number field validation can be
subjective in some cases as well.

In addition, format checks are other important validations to
be done on the input data records.

3. SOURCE TO TARGET DATA

VALIDATIONS
For any data movement between two systems, it is mandatory
to carry out source versus target validations. The data
movement can vary from a simple DB transfer to complex
transformational migrations. In addition, there can a single
stage migration or multistage data migrations. The role of the
quality assurance teams here is to analyze and understand the
process of migration and apply appropriate validation
principles as part of testing. This is the key for a successful
test completion.

In large enterprise applications, data migration can include
large volume ranges that vary from a few thousands of records
to few millions. Quality assurance teams typically apply
random sampling data validations, as it requires significant
time and effort for a full-fledged source versus target
comparisons. There are several approaches to address this
problem utilizing open source tools as well as licensed tools.
There are a number of articles and papers written on data
validation approaches which can be referred to.

4. DESIGN OF FRAMEWORK -

CONSIDERATIONS
The first and foremost thumb rule for any independent QA
testing team is to design and draft test scenarios from the
system requirements, that is, mapping rules. QA teams should
apply caution while reusing the ETL tool’s query output
which is used for data migration post transformation. The
simple reason being, a verification process approach should
be independent of the creation approach. This ensures that in
case of any defect the root cause of the defect might be due to
the transformation logic during implementation.

Enabling Automation:
End-to-end automation on data-testing requires the
enablement of automation on the following activities:

[1] Data quality checks

[2] Source versus target validations

[3] Defect analysis – leveraging the defect log data storage
repository

Automation of data quality checks have been witnessed
earlier. In order to enable automation on data validation, an
appreciation of how ETL transformation works will
immensely help. All ETL processes are designed based on
mapping rules. The mapping rule set acts as a source for the
ETL developers. To understand better, this is similar to the
requirement / functional specification document for
application development. Functional testing teams use these
documents as a source for test design. QA team involved in
ETL testing, should treat the mapping rule document as an
important source for analysis and test design.

The first step would be to create SQL queries based on the
mapping rule document. Depending on the complexity, the
query is designed. The next step would be to execute the
query against the source and target. If the transformation
happens on a multistage phase as per map-reduce then the
source target will vary accordingly.

The final step being validation of the retrieved values from
source and target. There are approaches and tools available in
the public domain for source-target validations. To achieve
end-to-end automation, all the three steps have to be
considered for automation, thus bringing in higher efficiency.

Validation Engine

XML CSV Mainframe FilesJSON

Heterogeneous input files

Business Analyst

Data Quality Rules Library

Template configuration & rules configuration

UI Driven

Dashboard & Results

Data validation rule .. 1

Data validation rule .. 2

Data validation rule .. 3

Data validation rule ..

data validation rule ..

data validation rule ..

data validation rule ..

data validation rule .. N

International Journal of Computer Applications (0975 – 8887)

Volume 126 – No.11, September 2015

3

Fig 3: Enabling Automation for Data validation

To summarize, automated data validation involves tool
enabled activities for the following:

[1] Conversion engine - mapping rules to SQL queries
(assuming source and target are SQL complaint systems)

[2] Execution engine

[3] Validation engine

There could be a situation where the source and/or target may
not support SQL operations and for those cases alternate
approaches need to be considered for data retrieval.

Any framework involved in automation is expected to
automate the said activities, seamlessly so as to enable
continuous integration as well.

5. DEFECT ANALYSIS
Any testing activity is considered incomplete without a proper
defect report filing and the subsequent analysis. Data-testing
is no exception to that and it is even more important
considering the complex heterogeneous data types, formats,
and input sources.

5.1. Where is My Defect?
An accurate defect root-cause analysis immensely benefits the
development teams significantly enabling the SDLC to
achieve high degree of maturity and effectiveness. It is a
proven fact on systems running for years that the time taken to
identify the source of the problem is much higher than to fix
the same.

Table 2: Types of testing corresponding to flow of data

To arrive at a quicker resolution, it is imperative to perform
appropriate checks as illustrated above. As has been seen,
data-testing is not a single step activity. At the point of arrival
of source data, the data quality checks identify the defects
which otherwise could pop-up in some form during the
validation of the downstream applications. Data validation
post migration helps to unearth defects due to the migration
process.

The types of testing to be performed against respective
sources to give a high-level of understanding:

Table 1: Types of testing on various sources

5.2. Approach to Analysis:
One of the best practices as part of defect management is to
enter the cause of the defects as part of defect fixing in the
defect management tool. Teams use this information to create
inference reports on the factors influencing the defects and
take corrective actions.

Similar approach alone may not be sufficient for data testing,
as many a times the fix could be a temporary one, to handle an
incorrect entry from the data source. It is an acceptable
business practice for project teams to have a quick fix and
later go in for a permanent fix purely from a business
perspective. A structured defect analysis comparing the
relationship between the various stages in the data movement
life cycle is required to enable development teams reach the
source of the problem faster.

Let us consider the following:

[1] Set A: Defect catalogue captured due to data quality
checks

[2] Set B: Defect catalogue at data-validation checks

[3] Set C: Defects observed at the reporting application layer

Fig 4: Defects reduction through continuous testing

By having thorough data quality and data validation checks, it
is natural to expect a lower defects ratio at the reporting
application layer. In the above approach, maximum data-
source defects are blocked at the initial level, further at the
data validation layer, and finally at the reporting application
layer. Thus, defect reduction can be obtained through the
process of continuous data testing at different layers.

Defects reduction in subsequent phases is one of the most
important objectives of quality assurance teams. In this
journey, it will be interesting to see how a thoughtful
inference from the defect analysis can help to achieve defect
prevention.

Let us elaborate on the above example. Due to factors like
incomplete data quality checks, test-miss, and open/known
issues there can be a situation where part of set A can be
observed along with set B. Similarly, part of set B with set C,
and finally both set A and set B with set C, as depicted below.

Fig 5: Defect analysis inference

Mapping Rule
Specifications

SQL Query

generation

Query

Execution

Data

Validation Reports

Data

Entry Data Exit

Application

Layer

Data - Quality ����

Data – Validation ����

Functional Test ����

Sources Types of Testing

Upstream Data Data Quality Check

Migration / Transformation

Process
Data Validation Checks

Reports Validation Reports Functional testing

Downstream Systems Functional Testing

BA C

Defects flow reduction"

BA CB

A B

C

International Journal of Computer Applications (0975 – 8887)

Volume 126 – No.11, September 2015

4

The above three scenarios to be read as follows:

[1] A ∩ B – Common defects due to data quality issues and
data migration, to be considered as high priority. There
could be a dependent data-set within a same record not
being handled properly.

[2] B ∩ C – Migration defects leaked to reporting
(presentation) layer.

[3] A ∩ B ∩ C – Common defects carried across the stages,
require fix at data source level.

Through the above approach, at the individual steps, project
teams can take decisions on where more time needs to be
spent for testing activities. By further applying additional
cardinal set-theory concepts similar to above, more interesting
inferences can be obtained which will help to achieve defect
prevention for the subsequent cycles and releases. In addition
redundant defects can be reduced.

There could be situations where independent QA teams might
be involved on the above activities. However, by performing
the defect analysis from the data origin through a structured
approach, project teams’ benefit on prioritizing the efforts as
well as overall cost optimization.

A developer fixing a defect at reporting application layer,
should know the origin source for the same in order to have a
quick fix. For faster identification, the defect-log data storage
repository plays an important role. As the data testing process
moves from one step to the next, the defects summary log
should be catalogued against respective processes.

6. NEEDS AND BENEFITS
The complexity of defect sources increases as the testing
activity progresses, as represented below:

Table 4: Defect root cause classifications

Imagine a situation of complex business systems, where the
possible causes for a data defect on downstream systems
could be anything from a simple coding error to reports to
migration processes. It could be a developer’s nightmare to
analyze the root causes going by the nature of the multistage
data movement. It is imperative that appropriate testing needs
to be carried out by the teams involved in data testing at
appropriate phases. Failing which, the amount of effort to be
spent on issue resolution will multiply significantly.

Testing teams should be aware that data validation primarily
checks source versus target. Hence in a pass-through
migration, an invalid data at source could get moved to target
as-is. Data validation checks will show as pass, however,
downstream system will end showing a defect due to bad data.
Hence by tracking the defect deduction metric at each phase,
prediction analysis improves the subsequent testing phase.
This also helps the release management teams in the decision
making process.

Defect management is a complex activity on SDLC,
especially when the release time period comes closer. The
defect management process should not be seen only as an
activity to achieve defect closure. In-depth inferences can be
made which can help the projects teams in decision making.
Data testing being a multilayered approach, a well-planned
defect management process in the current release cycle, can
help in preventing defects in the subsequent cycle by
recommending appropriate corrective measures.

Consider an example, where a data defect was observed at the
downstream systems. There can be several possibilities as to
whether this defect was captured earlier or not, based on
which project teams shall be able to apply measures at the
right place. The below table summarizes the possible
combinations while performing a casual analysis for data
testing.

Table 3: Defect analysis backward tracing

For a given data defect at downstream applications, the
associated defect should be tracked backwards as part of the
root cause analysis. There can be complex combinations in
this process. A careful and smart analysis can help achieve
preventive measures as well as accurate root cause analysis:

[1] Defect observed at data quality check stage and not
during validation stage – the migration/transformation
process to be reviewed.

[2] Defect was observed at both data quality and data
validation stage. Ideally at downstream this should have
been a pass. Possible causes could be due to leakage or
incorrect test and error due to dependent data
mismatches. At validation stage, only individual records
will be tested, whereas at downstream stage the record
will be grouped as per business rules.

[3] No defect was observed at data quality, but defect was
observed at validation. This can happen primarily when
the rules at data quality are outdated, and the migration
could be a straight pass-through without transformation.

[4] Finally, both data quality and data validation were
passed, however, there is still a data defect downstream.
Potential reasons could be that the upstream system still
follows old rules and the same is reflecting at data
quality checks. Both upstream systems as well as internal
systems to reconfigure their rule validations.

There could be a situation where teams will be working hard
to fix a defect, without realizing it is not a defect, rather an
issue with incoming source from an upstream system which
can be a third party service provider. A structured analysis
helps to arrive at a conclusion quickly.

Defects @ Possible Causes

Data Loading Data quality on upstream sources

Data Validation Migration process and/or

upstream data

Reports Testing Upstream data sources, Migration

process, Reporting process

Downstream Applications All of the above in addition to

application specific issues

Data

Quality

Data

Validation

Inferences

Defect No Defect Migration / Transformation logic to

be re-looked at.

Defect Defect Defect leakage, open defects.

No Defect Defect Possibility of data-quality rules not

reflecting the actuals.

No Defect No Defect Indicates the upstream data source

rule dictionaries are not updated;

Upstream systems to re-validate the

data rule dictionary

International Journal of Computer Applications (0975 – 8887)

Volume 126 – No.11, September 2015

5

7. APPROACH FOR LARGE DATA

VOLUMES TEST
One of the challenging tasks for testing teams involved in data
testing is how to handle large data volumes, known as Big
Data. Here the volumes can be multi millions of transactions.
As explained in the earlier sections, appreciation about the
migration/transformation process will immensely help to
create a strategy. Without which, one could be lead to a
complex, redundant cycle.

[1] For data movements of huge volumes through system
driven commands record-level comparisons are
redundant. Dimension level checks like aggregation and
count are faster approaches.

[2] If the migration is tool-driven (any market ETL tool), an
analysis should be done to check whether the movement
is a pass-through or any other transformation logic is
involved. A careful study of the mapping rule document
will come handy in such situations. Teams can fine tune
their comparison logic restricting to actual
transformations rather than proceeding with record level
validations for the entire set.

To summarize, large volume comparisons is very much
possible and automatable, however it comes with a cost and
effort. Enough care should be taken, as the data movement
itself might take a few hours for, say, 10 million transactions.
It will be redundant to invest equal or more amount of time
for validation without analyzing the opportunity for errors.
More the transformation logic, more the opportunity for
defects. Straight pass-through means lesser the opportunity for
defects. Testing teams should spend more effort where
opportunity for defects is high.

8. CONCLUSION
To perform functional testing, there is a physical entity in the
form of UI where the system tester acts upon. It is easy to
learn and replay. However, for data testing, in the absence of
user interface, testers are expected to have the basic
understanding of the steps and processes involved. To be a
successful back-end tester, an appreciation of data quality and
data validation, process involved on data transformations are
inevitable. One-click automaton which was possible for
functional testing, may not fully fit data testing. However, a
combination of individual tools and automated steps will
bring in significant acceleration to the data testing journey.

9. REFERENCES
[1] The Six Principles of BW Data Validation. Sapiex White

papers: http://www.sapiex.net/sapiex/sapiex.nsf/0/
272DE7600522A3CE862578230056F4FA/$FILE/Sapiex
_White_Paper_-
_The_Six_Principles_of_BW_Data_Validation.pdf

[2] General concepts of Set Theory

[3] Yuan Wang, David J. DeWitt, Jin-Yi Cai, “X-Diff: An
Effective Change Detection Algorithm for XML
Documents”, http://research.cs.wisc.edu/niagara/papers/
xdiff.pdf

[4] Parsing Techniques - A Practical Guide:
http://dickgrune.com/Books/PTAPG_1st_Edition/

[5] XQuery/XML Differences. Available at:
https://en.wikibooks.org/wiki/XQuery/XML_Differences

IJCATM : www.ijcaonline.org

