
International Journal of Computer Applications (0975 – 8887)

Volume 126 – No.11, September 2015

16

An Automatic Detection System for SQL Injection

Divya Jain

Department of Computer Engg.
College of Technology and
Engineering, Udaipur, India

Naveen Choudhary
Department of Computer Engg.

College of Technology and
Engineering, Udaipur, India

ABSTRACT
The growth of the internet is increasing day by day, mostly

content is database driven. There are many web applications

like E-Commerce, banking where he/she has to trust on this

application and have to provide personal information into

their underlying database. If there is no confidentiality and

security of information then any one can steal or see our

information or may utilize this information for misbehaving

activity. One of them is SQL injection, a hacker may insert his

bad/malicious SQL code into other’s database and running of

those queries is capable to extract private and valuable

information or may destroy the database. In this paper,

proposing a technique to detect SQL injection using the

hidden web crawling technique incorporating with parse tree

and digital signature. The proposed scheme finds a SQL

injection vulnerability by replicating web attack and analyze

the data of the response. The proposed technique is compared

with hidden web crawling technique to analyze its’s

effectiveness. For experimental evaluation, implement this

system in Eclipse with MYSQL database to analyze the

results.

Keywords

SQL injection, Hidden web Crawling, Parse tree, Digital

Signature.

1. INTRODUCTION
At present internet is a very important source of information

and communication channel between user and service

providers. As using of web application is increasing, there is

increase of web attack also. One of them is SQL injection

attacks (SQLIA), this vulnerability may lead to unauthorized

access of resources, escalation of privileges and loss of

confidentiality and integrity. Recently the incident of SQLIA

has been so high that a survey done by new IBM-X Force

Threat Intelligence [3] for year 2014 almost 10 % increase in

security attacks on business which leaks one billion records of

personal identifiable information (PII) were leaked. All these

attacks are due to SQLIAs and other cyber attacks.

 SQL is one of the web attack used by hackers to swipe data

from organizations. It is an application layer attack. In this

mechanism, malicious SQL command is executed by the web

application, exposing the backend database. An SQL injection

attack can occur when a web application utilizes user supplied

data without proper validation or encoding as part of a SQL

query. Injected SQL interdiction can reforms SQL statement

and encompasses the security of web application.

 As shown in Fig. 1 attackers inject malicious SQL code and

retrieve personal information. In this a simple web page where

the user has to provide his user id and password to login in

“form.jsp” which is passed through a firewall, web server,

application server and finally to database server.

Fig. 1: SQL injection

SQLIAs is not necessarily prevented by firewall and intrusion

detection system because the websites need to be public,

security mechanism allows public web traffic to communicate

with web application (generally run over 80/443).

Firewall

Web Server

Application Server

DB Server

Reterieve PersonalInformation:

Userid : ram123

Password : r1@23

Gender : M

Internet

http://example.com/form.html?userid=abcd &

password=anything or ‘x’=’x

Attacker

http://example.com/form.html?userid=abcd

International Journal of Computer Applications (0975 – 8887)

Volume 126 – No.11, September 2015

17

In this paper, incorporating hidden web crawling [4, 6, 11]

with parse tree [5, 17] and digital signature to not only

detection of SQL injection but also prevention at run time so

the objectives are enumerated as follows:

 In hidden web crawling technique incorporating the

detection of SQL injection at run time, analysis of

hidden web crawling technique is fed into running

time detection system.

 To improve the authentication use digital signatures,

which improve scalability of the system.

 Use the parse tree to detect suspected vulnerability

with a new proposed approach.

 Implement this system and compare with hidden

web crawling to analyse the results.

 To evaluate this approach we test over PHP web application

[12] to detect SQL injection as true positive, false positive and

false negative results.

The organization of the paper as follows in section 2

description of types of SQL injection attacks, in section 3

Hidden web crawling technique and SQL injection, in a

section 4 parse tree technique and SQL injection, in section 5

proposed methodology, in section 6 conclusion the future

work.

2. TYPES OF SQL INJECTIO ATTACKS
The basic types of SQL attacks [7] are as follows:

Tautologies based SQL attack:

Tautology means in every possible interpretation always

calculates to true, this attack is injected by using conditional

OR operator by which SQL query calculates to true. This

attack bypassed the user authentication and extracts the data

by inserting conditional OR operator in the WHER clause of a

SQL query. It will reshape the SQL query into tautology by

which database will be exposed to an unauthorized user. If an

attacker inserts in a query 'abcd' as password and anything'

OR 'x'='x as password the query becomes:

Select * from userdetails where userid=‘abcd’ and

password =’anything’ or ‘x’=’x’

On the basis of operator precedence rule, the WHERE clause

is evaluated to true for one row, so the query will return whole

records. By this an assailant will be able to access personal

information of the user.

Piggybacked Queries attack:

As the name suggests that hacker injects additional query with

original one by which database gets multiple SQL queries. In

this method original query is valid, but another query is

attacking query with first one. This type of query is allowed in

one query due to miss configuration of a system. Suppose an

attacker injects abcd as userid and'; drop table pqr-- as a

password then the resulting query is:

Select * from userdetails where userid=‘abcd’ and

password = “; drop table pqr--‘

In this original query executed normally returns zero rows, a

query delimiter (";") is recognized by the database and

executed the additional injected query. The consequences of

this query will wipe out valuable information from the

database.

Union Query:

The union query attack is done by introducing a UNION

keyword into a vulnerable parameter which will return the

union of original and injected query.

The SQL UNION operator fetched the results (rows) from

participating queries. Suppose the code injected by an attacker

is ‘UNION select * from empldetails-- in user id field and

abcd in password field so the query becomes:

Select * from userdetails where userid = ‘’ UNION selects

* from empldetails –‘ and password = ‘abcd’;

Using comment operator (--) will ignore the rest of the query,

i.e. password = 'abcd'. So, in this query original query

acknowledges a null set value as there is no matching details

in the table userdetails and the injected query will return all

the data from empdetails table.

Illegal/Logically Incorrect Queries:

In this type of injection this is pre attacking steps for more

attacks; it means that collection of information about the type

and structure of the database. In this method some error

messages returned by the application server by analysing

these messages, an attacker is able to take the advantage of

this weakness. Sometime these logical error messages not

only give the data type of certain columns, but also the name

of the table and columns.

Inference:

In this method attacking code is applied to a secured database

which does not give any logical error messages. This method

normally works on the basis of true false statement. After

collecting sensitive information, the assailants inject different

conditions (how the database behaves as true or false means

working or not on this injecting code) and determine the

situation carefully. If the injecting code evaluates to true

implies that page working is normally and if it is false means

that page behaving is not normal. This type of attack is blind

attack. Similarly to blind attack there is time attack. In this

attack, an attacker tries to gather information of those

parameters which are based on time delays in the response of

a query or database.

http://www.example.com/product.php?product_id=100

AND if (version () like ‘5%’, sleep (15), ‘false’))--

Here in this attack, an attacker is determining the version of

MYSQL is 5.X or not and also introduces a delay of 15

seconds to respond this query.

Stored Procedures:

In access relational database system, there is a subroutine

called stored procedure and stored in the data dictionary. In

this there is the definition of data validation and access control

mechanism. In this centralized logic is built to access

resources and complex queries are moved into a stored

procedure. In this attack first an attacker uses pre attacking

code to find the database type and version using

illegal/logically incorrect queries. After finding this an

attacker uses various procedures through injecting code. As

the code of stored procedure is written by the developer, so

these procedures are not vulnerable to SQLIAs. They may be

vulnerable to provide the administrative access.

Suppose an assailant injects ‘; SHUTDOWN; -- into either the

user id or password fields then the resulting query is:

International Journal of Computer Applications (0975 – 8887)

Volume 126 – No.11, September 2015

18

Select* from userdetails where userid=‘abcd’ and

password = ‘’; SHUTDOWN; -- ‘

This query will cause the database to shut down.

Alternate Encodings:

In this method defensive coding is used by an assailant to

bypass injected code which is encoded text. Encoding

methods like hexadecimal, ASCII and Unicode character

encoding. Scanner and detection techniques are not effective

against such attacks. See the following illustration:

Select* from userdetails where userid= ‘’ and password = ‘

’; exce (char (0x736875746446j776e)) ‘

Here in char () function ASCII hexadecimal encoding scheme

is used; this will return the actual character of the hexadecimal

encoded character. This encoded text means is shut down of

database when this attacking code is executed.

3. HIDDEN WEB CRAWLER AND SQL

INJECTION [6]
To detect SQL injection vulnerability in hidden web crawler

is based on response analysis of a web page. On the basis of

collected information by crawler, attacking code query is

submitted to web servers then the behavior of page is

analyzed whether the SQL injection is performed or not.

3.1 Strategy of Hidden Web Crawler

Now a day, users have to provide correct authentication

information to web services, to access corresponding web

services. This authentication information is utilized in hidden

web crawling to improve the overall security detection

system. This methodology is based on access authorization

data table (AADT) which is 5 attributes information is

follows:

Ai = (TOi, Hi, Ni, Ti, Vi) where TOi is target website address,

Hi is hash value of target website, Ni is the name of

authorization input form, Ti is type of form and last Vi is the

used to save the value which is assigned to authorization input

For example, if target website URL is www.examplecode.com

is detected, Ai and Ai+1 is calculated as follows:

Ai = (www.examplecode.com, be1e49a29c8d31ej187r,

username, password, Jony)

Ai+1 = (www.examplecode.com, be1e49a29c8d31ej187r,

Passfully, password, 123457)

Firstly AADT is established before traversing of target

website. The analyzing engine of crawler identify all

vulnerable spots or it can say collect all information where

user submits his/her information. When page requires

authentication information the AADT compute these 5

attribute information where Vi has default value then AADT

match these values against At if matches successfully then it

replace Vi’s default value with its correct value and get to

access web services. For response analysis is used such as

cookies, session and so on. The crawler is recursively started

to perform deep crawling on founding of any URL or

hyperlink which improves overall detection. The strategy as

shown in figure 2:

 Y N

 N

 Y

 Y

 N

Fig 2: Hidden Web Crawling Strategy

3.2 Attacking Code & Response Analysis

To test this strategy attacking code is constructed to analyze

the response as follows: If the response analyzing result

shows that the SQL command executed invalidated by the

values of “attacking code” injected by the attacker or if the

values of “attacking code” lead to database logical exceptions

raised by the database server. When there is no way to find

out confirmed the result, then these are doubtful cases.

4. PARSE TREE AND SQL INJECTION

DETECTION [5]
To detect SQL injection vulnerability in parse tree the SQL

query is represented as a tree format. The grammar knowledge

of statement is required for parsing. With the help of parse

tree they determine whether the queries are same or not.

When an attacker submits any SQL attacking code to database

server then the structure of attacking query is different from

actual query as shown in fig. 3:

Choose URL

Retrieve Pages

Extract Links & add to queue

Form

Authentication

Login or not

Form Analysis

Choose authentication

information

Enter authentication

information maually

Form Analysis

Response Analysis

International Journal of Computer Applications (0975 – 8887)

Volume 126 – No.11, September 2015

19

Fig 3a: Parse Tree of actual query

Fig 3b: Parse Tree of attacking query

Here attacking code means any modification or changes done

to the original query or it can say crafting of user input. In

parse tree user input are present as empty literal at leaf nodes

of tree. When the input is supplied then the input is filled into

empty leaf nodes. The value of leaf nodes must be in position

and literal.

As shown in fig 3a the parse tree of a SQL query is Select *

from user where username = ? and password = ?. These

question marks are replaced by user supplied input by which

comparison is made that structure of SQL query is same or

not.

The SQLGuard class have the capability of string building

and parsing so this class is used to implement this solution in

java with 3 ms overhead. A fresh key is generated when any

SQL string is prepended with SQLGuard.init(). For every

query new key is generated because of loading of page. When

any query is submitted to database server, with help of

SQLGuard.wraps(s). It is first pre-postened with current key.

By this way an attacker can’t guess the key. The private

method of SQLGuard class verify() is used to remove the key

from beginning of query and use it to identify wrapped used

input which is used for building for parse tree. After building

of parse tree comparison is made on the basis of structure by

which malicious query is detected.

5. PROPOSED METHODOLOGY AND

SQLINJECTION
To detect SQL injection at run time incorporating hidden web

crawling technique with parse tree and digital signature.

Implement this system in Eclipse on Window 7, 3 GB RAM

configuration with 2.40 GHz processor. The architecture of

the proposed method is shown in figure 4:

In Evalustion phase, firstly go through a hidden web crawler

to find out all links and vulnerable spots with digital

signature, here using the digital signature for authorization of

user instead of AADT table to improve scalability of system

but the results at this stage have false positive and false

negative. Comparision of the proposed scheme is done with

the hidden web crawler [4, 6, 11] results and earlier tools ZAP

[14] and Vega [15] to analyze it’s effectiveness.

Select * from users where username=? And password=?

Select Select

list

where Where

clause

From Table

list

Identifier Identifier Identifier = Literal And Identifier = Literal

* Users Username Password

Select *from users where username=’Greg’ and

password=’secret’

Select Select

list

Form Table

list

where Where

clause

Identifier Identifier Identifier Identifier = = Literal And Literal

* Users Username ‘Greg’ Password ‘secret’

International Journal of Computer Applications (0975 – 8887)

Volume 126 – No.11, September 2015

20

.

Fig 4: Evaluation and Detection phase of proposed

methodology

At Detection phase, at run time parse tree technique is used to

remove the suspected vulnerability in hidden web crawler. For

this doing parsing of SQL statement before inclusion of user

input after inclusion of input for PHP web application. Then

combing both results to remove the suspected vulnerability by

a hidden web crawler method in this way:

R= (A OR RSM) AND (SM AND RSM)

Here A is detection of vulnerability by hidden web crawler.

RSM is run time parsing of SQL statement.

SM is parsed of SQL statement before inclusion of input.

The proposed methodology has been tested over [12] web

application with these attacking codes:

Table 1: Attacking code construct

Attacking code

1’ or ‘1

Anything’ or ‘x’=’x

x' OR user like '%r%

and 1’=’1

‘ or ‘x’=’x

x’ and email is null;--

‘ or 1=1--

x’; drop table members;--

%3b

%20and%20’1’=’1

5.1 Result and Response Analysis
Test of 10 attacking code against php web application [12]

and for effectiveness of implemented system results

comparing with not only hidden web crawler [4, 6, 11], but

also other crawler tool ZAP [14], VEGA [15].The result

analysis on response is done by this way:

 The result is true positive If the analysing result

shows that the SQL command executed invalidated

by the values of “attacking code” constructed by the

detector.

 The result is false positive when attacking code

leads to database exception error.

 Doubtful cases come into existence when there is no

way to find out true positive and false positive

results.

 False negative results are those which are not

identified by the system.

Table 2: Results of Our System

 Total

injected

True

Positive

Doubtful False

Positive

False

Negative

Our system 10 10 0 0 0

Hidden

Web

crawler

10 5 1 3 1

Scanner

Zap

10 1 1 1 7

Scanner

Vega

10 2 1 0 7

The solution is tested on php web application [12] with the

list shown in table1 attacking code in which implemented

system is able to detect all these vulnerability where as in

hidden web crawler there is 1 false negative and 3 false

positive and scanner ZAP and Vega has 1,0 and 7,7 as false

positive and false negative respectively so implemented

system is better than hidden web crawling. Implement this

Web Pages

Evaluation and Detection Phase

Run Time

User Results

User Inputs

Hidden Web

Crawler

Parse Tree Genearator Phase

Parse Parse tree

Benign

Queries

Malicious

Query

Detected

Database

Queries

International Journal of Computer Applications (0975 – 8887)

Volume 126 – No.11, September 2015

21

system for PHP web application [12] and the total time

overhead for this is 3114 ms which is greater than parse tree

[5] technique.

The results in graphical format is as follows:

Fig. 6 Results of our system

In this it is seen that implemented system is able to detect all

attacking code which are listed in table1, in hidden web

crawler is able to detect 50% where as ZAP [14] and VEGA

[15] are able to detect 10% ,10% respectively.

6. CONCLUSION AND FUTURE WORK
Most of all web application based on middleware technology,

to retrieve information from relational database SQL. From

the above results and graph discussion it can be say that

implemented system is more secure where as hidden web

crawler is able to detect 50% vulnerability and 10% by ZAP

or 10% by VEGA. In proposed scheme time overhead

increases. Implemented system provide a new approach to

secure a web application. In near future we may enhance the

algorithm used in hidden web crawler and parse tree to detect

SQL injection.

7. REFERENCES
[1] Dwen, T., Chang, A., Liu, P. and Chen, H. 2009.

Optimum Tuning of Defence Settings for Common

Attacks on the Web Applications Security technology,

43rd Annual International CarnahanConference.

[2] Jovanovic, N., Kruegel, C., Kirda, E. 2006. Pixy: A

Static Analysis Tool for Detecting Web Application

Vulnerabilities Security and Privacy, IEEE Symposium.

[3] Website http://git.okt-srl.com/poste/0/43.

[4] Gupta, N., Kapoor,S. 2014. Extraction of Query

Interfaces for Domain Specific Hidden Web Crawler

International Journal of Computer Science and

Infomation Technologies, Vol5 (1).

[5] Buehrer, G.,Weide, B., Sivilotti, P. 2005. Using Parse

Tree Validation to Prevent SQL Injection Attacks

Proceedings of the 5th international workshop on

Software engineering and middleware.

[6] Wang, X., Wang, L., Wei, G., Zhang, D., Yang, Y. 2010.

Hidden Web Crawling for Sql Injection Detection

Broadband Network and Multimedia Technology (IC-

BNMT), 3rd IEEE International Conference

[7] Halfond, W., Viegas, J., Orso A. 2006. A Classification of

SQL Injection Attacks and Countermeasures In

Proceedings of the International Symposium on Secure

Software Engineering.

[8] Shar, L., Tan, H. 2013. Defeating SQL Injection

Computer (Volume:46 , Issue: 3) 69-77.

[9] Halfond, W., Orso, A. 2005. AMNESIA: Analysis and

Monitoring for NEutralizing SQLInjection Attacks

Proceedings of the 20th IEEE/ACM international

Conference on Automated software engineering.

[10] Website http://en. wikipedia.orglwiki/surface-web

[11] Gupta, S.,Bhatia, K. 2014. A Comparative study of

Hidden Web Crawler International Journal of Computer

Trends and Technology Volume 12 number 3.

[12] Testing website http://social.selfiecreation.com.

[13] Shehu, B., Xhuvani, A. 2014. A Literature Review and

Comparative Analyses on SQL Injection: Vulnerabilities,

Attacks and their Prevention and Detection Techniques

IJCSI International Journal of Computer Science Issues,

Vol. 11, Issue 4, No 1.

[14] OWASP Zed Attack Proxy website

https://www.owasp.org/index.php/OWASP_Zed_Attack

_project.

[15] Vega website https://subgraph.com/vega/.

[16] OWASP website

https://www.owasp.org/index.php/Top_10_2013_10.

[17] Ogheneovo, E.E., Asagba P. O. 2013. A Parse Tree

Model for Analyzing And Detecting SQL Injection

Vulnerabilities West African Journal of Industrial &

Academic Research Vol.6 No.1.

[18] Boyd, W. B., Keromytis D. A. 2004. SQLrand:

Preventing SQL Injection Attacks In Proceedings of the

2nd Applied Cryptography and Network Security

(ACNS) Conference, pages 292–302.

[19] Thomas, S., Williams, L. 2007. Using Automated Fix

Generation to Secure SQL Statements SESS '07

Proceedings of the Third International Workshop on

Software Engineering for Secure Systems

IJCATM : www.ijcaonline.org

https://www.owasp.org/index.php/Top_10_2013_10

