
International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.13, October 2015

38

Reformed FCFS Disk Scheduling Algorithm

Saman Rasool
Department of Computer Science & Engineering

Faculty of Engineering & Technology
Jamia Hamdard, New Delhi

Ritika Gakher
Department of Computer Science & Engineering

Faculty of Engineering & Technology
Jamia Hamdard, New Delhi

ABSTRACT

In this paper an improved version of the First come first serve

(FCFS) disk scheduling algorithm is provided. In the

proposed approach we have made use of maximum and

minimum service. It provides fast access time and dish

bandwidths for disk drives which makes the efficient usage of

hardware.

Keywords
Disk Scheduling, FCFS, SSTF, C-LOOK, C-SCAN, Total

Head Movement

1. INTRODUCTION
Disks are the secondary storage for bulk data. Present disks

are inferred as a logical blocks of large one dimensional array

wherein a logical block is considered as the smallest unit of

transfer. One of the major responsibilities of the operating

system is the efficient use of the hard disk. For meeting this

responsibility it requires to have a fast access time and disk

bandwidth. In a multiprogramming systems, where there are

multiple processes, the disk have many processes pending in a

queue, therefore, when each request is processed the operating

system picks one of the pending processes from the queue to

be processed next.

Access time has two major factors:

Seek time: Time taken by disk arm to move heads to the

cylinder containing described sector.

Rotational latency: It is the additional waiting time for disk to

rotate on the desired sector to disk head.

There are 5 disk scheduling algorithms which are as follows

FCFS: It is the simplest algorithm and performs operation in

order in which requests are received. It does not provide

fastest service. Also no rearranging of request is performed.

SSTF: In this request is serviced according to the next shortest

distance. It is another form of SJF scheduling. It can cause

starvation [6].

SCAN: The working of this approach is same like that of

elevator so called elevator algorithm. The disk arm starts from

one end of the disk, and moves towards the other end. It

services requests till it gets to the other end of disk, where the

head movement gets reversed and servicing is continued [6].

C-Scan: It is an improvised version of SCAN aimed at

providing a homogeneous wait time wherein it services the

requests moving from one end to another. When the head

reaches the other end it immediately hops back to the start of

the disk without servicing any request. It provides more

uniform wait time than SCAN algorithm [1].

C-LOOK: It is a modified version of C SCAN algorithm. The

arm services the request only till the last request then it

reverses the direction immediately without going till the end

of the disk [7].

2. RELATED WORKS
In [1] the researchers suggest a new disk scheduling algorithm

that aims at reducing the number of head movements. In [2]

the authors intent to improve the existing FCFS algorithm so

that the seek time and rotational latency can be reduced by

reducing average seek distance. In [3] the investigators looks

at the uncertainty associated with the disk scheduling

combining two aspects by using Fuzzy logic approach to

improve the comprehensive performance. In [4] the author

suggests an improved FCFS disk scheduling algorithm in

which the disk head is moved in order to serve the first

request and if there is any request waiting from the current

disk head position, the first request is served. Afterwards the

disk head moves towards next request waiting in the queue.

The left out request are also further dealt with the same

procedure. In [5] the researchers have combined the concept

of pipelining with CPU scheduling, thereby improving the

performance of CPU scheduling. In [6] the author aims at

improving the convergence of genetic algorithm and by

introducing the probability of simulated annealing as the

principle for recognition of new trial solution.

In [9] the novelists introduce two new algorithms for real time

systems i.e. SSEDO and SSEDV. In [10] the paper aims at

deriving upper bounds for disk utilization factor. In [11] the

researchers introduce two new algorithms which are SRLF

and SATF for reduced rational latency.

3. PROPOSED APPROACH
In the first come first serve disk scheduling algorithm the

request that arrives first is served first. In this paper, a

modification of the FCFS is proposed wherein we proceed as

follows.

1. Find k = max – min

Where max = maximum request

Min = min request

2. If K< current head position, then serve the request in

decreasing order (from current) and those request that are

greater than current are arranged in increasing order and

served after all the above request are served.

3. If k > current head position, then the serve the request

next to the current request in increasing order until the

highest request and then serve the current request.

4. EXAMPLES USING AND

COMPARING THE CONVENTIONAL

FCFS, SSTF AND C-LOOK

ALGORITHMS AND THE

PROPOSED APPROACH

International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.13, October 2015

39

4.1.1 Example 1: Using FCFS disk

scheduling algorithm
Current head movement=10

Sequence of requests: 3, 7, 26, 17, 21

Rearranged Sequence of request: 10, 3, 7, 26, 17, 21

Calculating Total head movement = | (3-10) + (7-3) + (26-7) +

(21-17) |

Total head movement: 7+4+19+9+4= 43

4.1.2 Example 1: Using C-SCAN disk

scheduling algorithm:
Current head movement=10

Sequence of requests: 3, 7, 26, 17, 21

Rearranged Sequence of request: 10, 17, 21, 26, 0, 3, 7

Calculating Total head movement =| (17-10) + (21-17) + (26-

21) + (0-26) + (3-0) + (7-3) |

Total head movement: 7+4+5+26+3+4= 49

4.1.3 Example 1: Using SSTF disk

scheduling algorithm
Current head movement=10

Sequence of requests: 3, 7, 26, 17, 21

Rearranged Sequence of request: 10, 7, 3, 17, 21, 26

Calculating Total head movement = | (7-10) + (3-7) + (17-3) +

(21-17) + (26-21) |

Total head movement: 3+4+14+4+5=30

4.1.4 Example 1: Using proposed approach:
Current head movement=10

Sequence of requests: 3, 7, 26, 17, 21

K= max-min

= 26-3 =23

If K> current

As 23< 10

Rearranged Sequence of request: 17, 21, 26, 10

Total head movement= | (21-17) + (26-21) + (10-26) |

= 4+5+16= 25

Hence the proposed approach is improved.

Table1: Comparison Table for Example 1

FCFS SSTF C-SCAN PROPOSED

10 10 10 17

3 7 17 21

7 3 21 26

26 17 26 10

17 21 0

21 26 3

 7

THM=43 THM=30 THM=49 THM=25

Fig 1: Graph defining the total head movement for FCFS,

C-SCAN, SSTF and proposed approach of example 1

4.2.1 Example 2: Using FCFS disk scheduling

algorithm
Current head movement=60

Sequence of requests: 90, 40, 45, 67, 53

Rearranged Sequence of request: 60, 90, 40, 45, 67, 53

Calculating Total head movement =| (90-60) + (40-90) + (45-

40) + (67-45) + (53-67) |

Total head movement: 30+50+5+22+14=121

4.2.2 Example 2: Using C-SCAN disk scheduling

algorithm
Current head movement=60

Sequence of requests: 90, 40, 45, 67, 53

Rearranged Sequence of request: 60, 67, 90, 0, 40, 45, 53

Calculating Total head movement =| (67-60) + (90-67) + (0-

90) + (40-0) + (45-40) + (53-45) |

Total head movement: 7+23+90+40+5+8= 173

4.2.3 Example 2: Using SSTF disk scheduling

algorithm
Current head movement=60

Sequence of requests: 90, 40, 45, 67, 53

Rearranged Sequence of request: 60, 53, 45, 40, 67, 90

Calculating Total head movement = | (53-60) + (45-53) + (40-

45) + (67-40) + (90-67) |

Total head movement: 7+8+5+27+23= 70

4.2.4 Example 2: Using proposed approach:
Current head movement=60

Sequence of requests: 90, 40, 45, 67, 53

K= max-min

= 90-40 =50

As, K< current

As 50< 60

Rearranged Sequence of request: 60, 53, 45, 40, 67, 90

International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.13, October 2015

40

Total head movement= | (53-60) + (45-53) + (40-45) + (67-

40) + (90-67) | = 7+8+5+27+23= 70

Hence the proposed approach is improved.

Table2: Comparison table for Example 2

FCFS CSAN SSTF PROPOSED

60 60 60 90

90 67 53 40

40 90 45 45

45 40 40 67

67 45 67 53

53 53 90

THM=121 THM=173 THM=70 THM=70

Fig 2: Graph defining the total head movement for FCFS,

C-SCAN, SSTF and proposed approach of example 2

4.3.1 Example 3: Using FCFS disk scheduling

algorithm
Current head movement=35

Sequence of requests: 10, 30, 40, 20, 15, 25

Rearranged Sequence of request: 35, 10, 30, 40, 20, 15, 25

Calculating Total head movement = | (10-35) + (30-10) + (40-

30) + (20-40) + (15-20) + (25-15) |

Total head movement: 25+20+10+20+5+10=90

4.3.2 Example 3: Using C-SCAN disk scheduling

algorithm
Current head movement = 35

Sequence of requests: 10, 30, 40, 20, 15, 25

Rearranged Sequence of request:

35, 40, 0, 10, 15, 20, 25

Calculating Total head movement = | (40-35) + (0-40) + (10-

0) + (15-10) + (20-15) + (25-20) |

Total head movement: 5+40+10+5+5+5= 70

4.3.3 Example 3: Using SSTF disk scheduling

algorithm
Current head movement=35

Sequence of requests: 10, 30, 40, 20, 15, 25

Rearranged Sequence of request: 35, 30, 25, 20, 15, 10, 40

Calculating Total head movement = | (30-35) + (25-30) + (20-

25) + (15-20) + (10-15) + (40-10) |

Total head movement: 5+5+5+5+5+30= 55

4.3.4 Example 3: Using proposed approach
Current head movement=35

Sequence of requests: 10, 30, 40, 20, 15, 25

K= max-min

 = 40-10 =30

As, K< current

As 30<35

Rearranged Sequence of request: 35, 30, 25, 20, 15, 10, 40

Total head movement=| (30-35) + (25-30) + (20-25) + (15-20)

+ (10-15) + (40-10) |

=5+5+5+5+5+30= 55

Hence the proposed approach is improved.

Table3: Comparison table for Example 3

FCFS CSCAN SSTF PROPOSED

35 35 35 35

10 40 30 30

30 0 25 25

40 10 20 20

20 15 15 15

15 20 10 10

25 25 40 40

THM=90 THM=70 THM=55 THM=55

Fig 3: Graph defining the total head movement for FCFS,

C-SCAN, SSTF and proposed approach of example 3

5. CONCLUSION
The proposed approach is observed, and it shows an upper

hand over the conventional First Come First Serve Disk

International Journal of Computer Applications (0975 – 8887)

Volume 127 – No.13, October 2015

41

scheduling algorithm. A similar approach can also be used in

the real time operating systems with minor alterations.

6. REFERENCES
[1] Sandipon Saha, Md. Nasim Akhter, Mohammod

AbulKashem, “A New Heuristic Disk Scheduling

Algorithm”, International Journal of Scientific &

Technology Research Volume2, Issue 1, January 2013.

[2] Priya Hooda, Supriya Raheja, “A New Approach to Disk

Scheduling Using Fuzzy Logic”, Journal of Computer

and Communications, 2014.

[3] Manish Kumar Mishra , An Improved FFS(IFCFS) Disk

Scheduling Algorithm, International Journal of Computer

Applications (0975-888), Volume 47- No. 13, June

2012.

[4] Hamid Husain, Karnav Gupta, Shradha Taneja,

“Modified First Come First Serve (MFCFS)”

[5] Himanshi Arora, Deepanshu Arora, Bagish Goel, Parita

Jain, “An Improved CPU Scheduling Algorithm”,

International Journal of Applied Information Systems

(IJAIS), Volume 6– No. 6, December 2013

[6] R Muthu Selvi, R Rajaram, A genetic based approach for

multi objective optimization of Disk Scheduling to

reduce the completion time and missed task.

International Journal of Information Technology

Convergence and Services, Volume.1, No. 4 , August

2011.

[7] Shenze Chen, John A. Stankovnic, James F. kurose, Don

Towsley, “Performance Evaluation of two New Disk

Scheduling Algorithm for Real Time System”. Office of

Naval under contract N00014-87-K-796 by NSF under

contract IRI-8908693, and by NSF equipment grants

CERDCR 8500332.

[8] Kitae Hwang , Heonshik Shin, New Disk Scheduling

Algorithm for Reduced Rotational Latency.pp 395 – 402.

[9] Giorgio Gallo, Federico Malucelli, Martina Marre,

Hamiltonian Path Algorithms for Disk Scheduling, pp 1-

8.

[10] Silberschatz ,Galvin and Gagne, Operating systems

concepts, 8th edition, Wiley, 2009.

[11] D.M. Dhamdhare, Operating Systems, Tata McGraw

Hill, Second Edition,2006.

[12] S Yashvir, Om Prakash, Selection of Scheduling

Algorithm, IJASCSE Volume 1, Issue 2 , 2012.

IJCATM : www.ijcaonline.org

