Estimation of Drug Administered by Fuzzy CETD Matrix to a Patient for a Bacterial Disease

R. Karthika
Asst. Prof of Mathematics
Hindusthan Institute of Technology, Coimbatore-32

A. Sahaya Sudha, Ph.D
Asst. Prof of Mathematics
Nirmala College for Women, Coimbatore-18

ABSTRACT
This paper deals with the study of the estimation of the maximum amount of drug to be given for a patient using fuzzy CETD matrix. It is based on the clinical survey of 30 patient’s culture report of the real data which was collected from a microbiological laboratory.

Keywords
Fuzzy matrix, ATD Matrix, RTD Matrix, CETD Matrix, Antibiotic Drug.

1. INTRODUCTION
Many patients suffer from different bacterial diseases hence they undergo some microbiological laboratory test hence the doctor suggests them to take the antibiotic drug which suits them, since it is required for the doctors to estimate the maximum amount of the drug to be given to kill the bacteria for each patient who suffer from bacterial fever. The Doctors prescription will be based on the age, sex, different bacterial conjuctives, Body weight etc. This work is based on the survey of the 30 patient’s culture report and the consultancy with the doctor. First and foremost the data was gathered from those patients report using linguistic questionnaire and this linguistic questionnaire was transformed into a fuzzy data. It is important to note while doing fuzzy mathematical models the fuzzy matrix may take the entries from the interval [-1, 1] then also they are known as fuzzy matrices. In this paper we will make use of the Fuzzy CETD matrix to solve this problem [11, 12].

2. PRELIMINARIES [2-4, 15, 16]
2.1 Definition
A fuzzy number A is a convex normalized fuzzy set on the real line R such that:
1) There exists at least one \( x_0 \in R \) with \( \mu_A(x_0) = 1 \).
2) \( \mu_A(x) \) is piecewise continuous.

2.2 Definition
The classical set \( \tilde{A}_\alpha \) called alpha cut set is the set of elements in which a fuzzy set A defined on and any number \( \alpha \in [0,1] \) is given by
\[
\tilde{A}_\alpha = \{x \in X|\mu_A(x) \geq \alpha\}
\]

2.3 Definition
Average Time Dependent Data matrix (ATD matrix) \( (\tilde{A}_{ij}) \) is obtained by dividing each entry of the raw data matrix by the number of years or the time period. This matrix represents a data, which is totally uniform.

2.4 Definition
The time dependent matrix has been converted to matrix with entries \( e_{ij} \), where \( e_{ij} \in \{-1,0,1\} \) using simple average techniques and such a matrix is called Refined Time dependent data matrix (RTD matrix.)

2.5 Definition
Combined Effective Time Dependent Data Matrix (CETD) is obtained by finding the row sum matrix of the RTD matrix and also by combining these matrices by varying \( \alpha \in [0,1] \), and such a matrix is called CETD matrix.

3. ALGORITHMIC APPROACH OF THE FUZZY CETD MATRIX
Following are the five stages to solve the above problem using CETD matrix:

Step-1: In the first stage, give a matrix representation of the raw data. The initial M x N matrix is not uniform. i.e., take the data as it is and transform into a raw time dependent data matrix by taking along the rows the zone mm of the antibiotic drug and along the columns the different categories like age group, body weight etc.

Step-2: So in the second stage, in order to obtain an unbiased uniform effect on each and every data so collected, transform this initial matrix into an Average Time Dependent Data matrix (ATD matrix). This is done by dividing each entry of the raw data matrix by the number of dosage of zone mm, i.e., the difference of the class interval of each row. This matrix represents a data, which is totally uniform.

Step-3: To make the calculations easier and simpler, in the third stage, use the simple average techniques, to convert the above time dependent data matrix into a matrix with entries \( e_{ij} \) where, \( e_{ij} \in \{-1,0,1\} \), i.e., find the average and standard deviation (SD) of every column in the ATD matrix. Using the average \( \mu_j \) of each \( j^{th} \) column and \( \sigma_j \) the S.D of each \( j^{th} \) column thus choose a parameter \( \alpha \) from the interval \([0,1]\) and name this matrix as the Refined Time Dependent Data matrix (RTD matrix). Thus determine the value of the entry \( e_{ij} \) in the refined time dependent data matrix

For each of the attributes \( j \ (j=1,2, \ldots \ldots N) \) , a rule has been framed:

If \( a_{ij} \leq (\mu_j - \alpha^* \sigma_j) \) then \( e_{ij} = -1 \); else, \( a_{ij} \geq (\mu_j + \alpha^* \sigma_j) \) then \( e_{ij} = 1 \); Here \( \alpha^* \) denotes the usual multiplication.

Thus, for different values of \( \alpha \), obtain some of the different refined time dependent fuzzy matrices. The main purpose of
introducing the refined time dependent fuzzy matrix is to minimize the time involved in performing the simple arithmetic calculations and operation on the matrix. For this matrix the entries are -1, 0 or 1.

Step - 4: At the fourth stage, using the refined time dependent fuzzy matrices, combine these matrices by varying $\alpha \in [0,1]$ and get the Combined Effective Time Dependent Data matrix (CETD) which gives the cumulative effect of all these entries.

4. CASE STUDY

Overall Patients Culture Report:

Table 4.1 Urine Aerobic Specimen Type

<table>
<thead>
<tr>
<th>S. No</th>
<th>No Of Patients</th>
<th>Significance Of The Bacteria</th>
<th>Isolation Of Bacteria</th>
<th>No Of Bacteria Present</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
<td>Significant Bacteria</td>
<td>Heavy growth of E-Coli</td>
<td>$&gt;1,00,000$ colonics /ml</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>Probably Significant Bacteria</td>
<td>Moderate growth of E-Coli</td>
<td>$50,000$ Colonics /ml</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>Probably Significant Bacteria</td>
<td>Scanty Growth of E-Coli</td>
<td>$30,000$ Colonics/ml</td>
</tr>
</tbody>
</table>

Table 4.2 Dosage of the drug consumed by 30 patients

<table>
<thead>
<tr>
<th>Dosage in Zone mm</th>
<th>6mm</th>
<th>15mm</th>
<th>16mm</th>
<th>20mm</th>
<th>21mm</th>
<th>23mm</th>
<th>25mm</th>
<th>26mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drugs Name</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.Oflaxacin</td>
<td>12</td>
<td></td>
<td></td>
<td>18</td>
<td></td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.Ciprofloxacin</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.Ceftriaxone</td>
<td>19</td>
<td></td>
<td>12</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.Cephotaxime</td>
<td>19</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.Levofoxacin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.Netillin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>7.Gentamycin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>8.Amoxyclav</td>
<td></td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.Cotrimaxazole</td>
<td></td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>10.Cefuraxime</td>
<td></td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.Norfloxacin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.Implipenum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>13.Piperacillin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>14.Cepeparazone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>15.Amikacin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>16.Tobramycin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>17.Nalidixic acid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>18.Nitrofurantoin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>19.Cefixime</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>20.Ceftazidine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
</tbody>
</table>

4.1 Estimation of Maximum Amount of the Drug to Kill the Bacteria with their Attributes

Using the linguistic questionnaire, the following seven attributes ($X_1, X_2, X_7$) are taken for this study.

$X_1$ - All age group above 12 years
$X_2$ - Significant Bacteria
$X_3$ - Isolation of the bacteria
$X_4$ - Patients Body weight
$X_5$ - Temperature
$X_6$ - Bacterial Conjectives

$X_7$ - No of Bacteria Present

The above attributes are taken as the columns of the initial raw data matrix. The amount of dosage i.e., zone mm of the antibiotic drug to be given for the patients varies as 14-16, 17-18, 19-20, 21-22, 23-25, 26-27 and are taken as the rows of the matrix. Based on the attributes the Initial Raw data matrix has been obtained. It has been clearly stated from 30 patient’s culture reports and doctor’s suggestion. The initial Raw Data Matrix of the amount of Antibiotic drug given to kill the bacteria of order 6 X 7 is given below:
Table 4.1.1 Initial Raw Data matrix

<table>
<thead>
<tr>
<th>Attributes</th>
<th>Zone in mm</th>
<th>X1</th>
<th>X2</th>
<th>X3</th>
<th>X4</th>
<th>X5</th>
<th>X6</th>
<th>X7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>14-16</td>
<td>14</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>17-18</td>
<td>5</td>
<td>8</td>
<td>7</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>19-20</td>
<td>0</td>
<td>9</td>
<td>8</td>
<td>11</td>
<td>10</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>21-22</td>
<td>0</td>
<td>21</td>
<td>17</td>
<td>23</td>
<td>19</td>
<td>22</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>23-25</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>8</td>
<td>10</td>
<td>16</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>26-27</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 4.1.2 ATD Matrix

<table>
<thead>
<tr>
<th>Attributes</th>
<th>X1</th>
<th>X2</th>
<th>X3</th>
<th>X4</th>
<th>X5</th>
<th>X6</th>
<th>X7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>14-16</td>
<td>4.67</td>
<td>1</td>
<td>0.67</td>
<td>0</td>
<td>1.33</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>17-18</td>
<td>2.5</td>
<td>4</td>
<td>3.5</td>
<td>0</td>
<td>2.5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>19-20</td>
<td>0</td>
<td>4.5</td>
<td>4</td>
<td>5.5</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>21-22</td>
<td>0</td>
<td>10.5</td>
<td>8.5</td>
<td>11.5</td>
<td>9.5</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>23-25</td>
<td>0</td>
<td>0</td>
<td>1.67</td>
<td>1.67</td>
<td>2.67</td>
<td>3.33</td>
</tr>
<tr>
<td></td>
<td>26-27</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 4.1.3 ATD Matrix

| Mean | 1.19 | 3.44 | 3.06 | 3.44 | 3.94 | 3.22 | 3.67 |
| S.D  | 1.80 | 3.58 | 2.82 | 4.07 | 2.74 | 4.00 | 3.86 |

Case (ii):

The RTD matrix for $\alpha = 0.1$

\[
\begin{bmatrix}
1 & -1 & -1 & -1 & -1 & -1 & -1 \\
0 & 1 & -1 & -1 & -1 & -1 & -1 \\
-1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 & 1 & 1 \\
-1 & -1 & -1 & -1 & 0 & 0 & 1 \\
-1 & -1 & -1 & -1 & 0 & -1 & -1 \\
\end{bmatrix}
\]

The row sum matrix

\[
\begin{bmatrix}
5 \\
2 \\
1 \\
5 \\
-2 \\
-6 \\
\end{bmatrix}
\]

The RTD matrix for $\alpha = 0.15$

\[
\begin{bmatrix}
1 & -1 & -1 & -1 & -1 & -1 & -1 \\
1 & 1 & 1 & 1 & 1 & -1 & -1 \\
-1 & 1 & 1 & 1 & 1 & 1 & 1 \\
-1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & -1 & -1 & -1 & 0 & 1 & 0 \\
0 & -1 & -1 & -1 & 0 & -1 & -1 \\
\end{bmatrix}
\]

The row sum matrix

\[
\begin{bmatrix}
1 \\
1 \\
5 \\
-3 \\
-6 \\
\end{bmatrix}
\]

The RTD matrix for $\alpha = 0.2$

\[
\begin{bmatrix}
1 & -1 & -1 & -1 & -1 & -1 & -1 \\
1 & 1 & 0 & -1 & -1 & -1 & -1 \\
-1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 & 1 & 1 \\
-1 & -1 & -1 & -1 & 0 & 0 & 1 \\
-1 & -1 & -1 & -1 & 0 & -1 & -1 \\
\end{bmatrix}
\]

The row sum matrix

\[
\begin{bmatrix}
5 \\
-2 \\
5 \\
0 \\
-2 \\
-6 \\
\end{bmatrix}
\]
7. REFERENCES

[3] Dwyer, (1965), P.S. Fuzzy sets. Information and Control, No.8: 338–353,

5. CONCLUSION:
In this section, the conclusions are based on the analysis of the above results. From the graph above, it is observed that the maximum amount of the drug consumed by the patient to kill the bacteria as obtained from the combined time dependent data matrix, given by the cumulative effect of all the values of \( \alpha \in [0,1] \) gives the maximum amount of drug that a patient should consume to kill the bacteria. These results coincide well with the doctor’s prescription. Thus the maximum amount of the Amikacin drug has been estimated about 21-22 mm for the patient to kill the bacteria. The importance of the dosage takes a vital role in the field of medicine. Unless otherwise proper guidelines are adhered the proper and correct result will not take place. The purpose of administering the medicine approximately as per the guidelines prescribed by the pharmacologist experts the net result will not be reached. Thus Fuzzy CETD Matrix has been applied to estimate the maximum amount of Antibiotic drug was about to 21-22mm of a given for the patient to kill the bacteria.

6. ACKNOWLEDGMENTS
Our sincere thanks to the Microbiological laboratory without whom this real time data of the patients is not possible.