Pilot based Channel Estimation and SCGNN based Equalization for MIMO-OFDM System

Zeeshan A. Abbasi
Assistant Professor
University Polytechnic
Jamia Millia Islamia, New Delhi

Zainul Abadin Jaffery
Professor
Dept. of Electrical Engineering
Jamia Millia Islamia, New Delhi

ABSTRACT
In this paper a new channel equalization technique is described based on Scaled Conjugate Gradient Neural Network (SCGNN) for Multiple Input Multiple Output (MIMO) Orthogonal Frequency Division Multiplexing (OFDM). To estimate the channel in frequency domain, Space Time Block Code (STBC) is used. At the beginning of each transmitted OFDM block the pilot sequence is inserted to estimate the channel. In the transmitter the 16-QAM modulation is used as it is efficient in conserving bandwidth. The performance is evaluated using MATLAB and various results are plotted at different values of SNR. It is observed from the simulation that the proposed channel estimation and equalization method greatly reduced the Symbol Error Rate. We are able to achieve the SER as low as 0.01at a very low value of SNR. The MMSE is also greatly reduced and the system converges very fast.

General Terms
ISI (Inter-symbol Interference), BER (Bit Error Rate), SNR (Signal to Noise Ratio)

Keywords
Scaled Conjugate Gradient Network, MIMO, OFDM, Equalization

1. INTRODUCTION
For wireless mobile communication the OFDM gained a lot of attention of the researchers as it fulfill the needs of high data transmission rates. OFDM gives huge channel capacity gain but the multipath effect is more severe as compare to the Single Input Single Output (SISO) system [1-4]. OFDM technology for wireless communication is becoming popular due to its advantages such as the high spectral efficiency, robustness to frequency selective fading and the feasibility of low cost transceiver implementations [5]. OFDM is considered one of the most promising technology for present and future wireless communication used in 3G or WiMex [6]. To improve the performance of the OFDM system, channel estimation and equalization plays an important role. For OFDM over fast varying fading channels the channel estimation is carried out by transmitting known pilot symbols in given position. The equalization is to reduce the channel distortion causing Inter Symbol Interference (ISI). The circuit or equipment used to achieve equalization is called an equalizer. The equalizer strengthen or weaken the energy of specific frequency band [7]. In this paper the channel estimation is done using pilot based approach and equalization using SCGNN.

There are many pilot design techniques exist for I/Q imbalance estimation in Quadrature modulation. The work in [8] explain the I/Q imbalance for SISO system. IT applies two OFDM training symbols per-subcarrier to perform estimation. The first training symbol has null tones at all negative subcarrier indexes. The drawback of this method is that it neither optimizes the pilot overhead (large overhead). It also does not considers the complex problem of pilot-data multiplexed symbols, MIMO-OFDM, and exploitation of frequency-domain correlation. Similar drawbacks apply to [9] with only the difference that it considers (mainly frequency independent (FI)) transmitter I/Q imbalance only, and uses a different pilot design. It uses an even number of OFDM training symbols with non-zero pilots where the pilots at the negative (positive) subcarrier indexes of the even symbols are the same as (negatives of) the corresponding pilots at the odd training symbols. The same pilot design using two OFDM training symbols is applied in [10] but one extra symbol is added for channel estimation for the FI receiver I/Q imbalance, resulting in a larger overhead. It considers pilot-data-multiplexed symbols, but the other drawbacks still hold. [11] applies a pilot design (a combination of the designs in [8] and [9]) which uses an even number of OFDM training symbols with null pilots at the negative subcarrier indexes of the first half of OFDM training symbols and at the positive subcarrier indexes of the second half of OFDM training symbols. It considers FI receiver I/Q imbalance only, and is also associated with the above drawbacks. In this paper comb type pilot based channel estimation is used in which we have inserted Np pilot symbol in the series of Z(k) OFDM symbols as per the following equation:

\[Z(k) = Z(mL+l) \]

Where L=number of sub carriers with respect to Np, m is the pilot carrier index [12].

Several adaptive learning algorithms for feed-forward neural networks has already been discovered and implemented in equalizers. Many of these uses gradient decent algorithm but it suffers poor convergence rate and depends on parameters which have to be specified by the users because there is still no theoretical basis exist for choosing them. The value of these parameters are often crucial for the success of the algorithm e.g. back-propagation algorithm [13]. The problem of optimizing the weight adjustment of neural network cab be effectively solve by Conjugate Gradient method.

2. OFDM SYSTEM MODEL
OFDM can be assumed as the special case of multicarrier wireless transmission. In OFDM a single data stream is transmitted over a number of low rate subcarriers. The idea of OFDM is to split the total bandwidth into a number of orthogonal subcarriers in order to transmit symbols using these sub carriers in parallel.

Figure 1 describe OFDM transmitter with two transmitting TX antenna and Figure 2 describe the OFDM receiver for two receive Rx antenna However, the idea can be applied to any number of Tx and Rx antennas. It can be seen from the
figure 1 that pilots are inserted at the beginning of the data and then the data is modulated by any of the modulating scheme but here 16-QAM modulation is used as it is bandwidth conserving. The modulated data is then encoded using the space time encoder. The output of the encoder is then split into two path, one for each antenna as described for the simple case of MIMO space-time coding in [14]. From [14] as it is applied for the OFDM system, we can have the following vectors for TX antennas 1 and 2:

\[T_{x_1} = [S_1 - S_2 \ S_3 - S_4 \ S_{N-1} - S_N] \quad \ldots \quad (1) \]

\[T_{x_2} = [\bar{S_1} - S_4 \ \bar{S_3} \ \ldots \ S_N - \bar{S}_{N-1}] \quad \ldots \quad (2) \]

where \(T_{x_1}, T_{x_2} \) are the vectors of the output of two TX antennas 1 and 2 respectively.

\(S_1, S_2 \) are the pilot symbols and \(S_3, S_4, \ldots, S_N \) are the message symbols. The total symbols will be double of the number of subcarrier. The encoded data is then passed through the serial to parallel converter which regroup the data as per the table 1:

<table>
<thead>
<tr>
<th>Time</th>
<th>Carrier</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T)</td>
<td>(S_1)</td>
</tr>
<tr>
<td>(t+T)</td>
<td>(\bar{S_2})</td>
</tr>
</tbody>
</table>

Before transmitting the signal to each antenna, a cyclic prefix is added to the message signal of each Tx antenna and then the signal is transmitted through the frequency selective channel. The cyclic prefix is assumed to be longer than the largest delay spread. The channel is assumed as the Rayleigh fading channel which is widely used as the channel in urban areas. Assuming CH1 and CH2 are the two channels from Tx antennas 1 and 2 respectively to the receiver.

\[S_{1,2} = \text{symbols transmitted from the Tx antennas 1 and 2 respectively and are given by} \]

\[S_1 = \bar{S}_1 - S_3 - S_{N-1} \quad \ldots \quad (4) \]

\[S_2 = [s_2 - s_4 - s_{N-1}] \quad \ldots \quad (5) \]

Finally the received signal is decoded as given by [14] and the result is given by

\[S_{i+1}[n,k] = CH_{1}\hat{r}[n,k]+CH_{2}r[n,k] \quad (6) \]

\[S_{i+1}[n,k] = CH_{2}\hat{r}[n,k]+CH_{1}r[n,k] \quad (7) \]

Where \(i = 1, 3, 5, \ldots, N-1 \) representing the symbol and \(\hat{r} \) representing the decoded data.

3. PROPOSED CHANNEL ESTIMATION METHOD

There are several techniques discussed in [15] to estimate the radio channel in OFDM system. In propose system we have
used pilot aided channel estimation technique. In order to estimate the channel first a pilot symbol is transmitted. In OFDM system the pilot is transmitted in the beginning of each OFDM block. Once the channel is estimated, equation (6) & (7) are used to decode the transmitted symbol by replacing CH_1 and CH_2 by the estimated ones. Thus, the two received symbols and the first symbol of each block of each antenna are used to estimated CH_1 and CH_2.

The estimated equation for CH_1 and CH_2 can be expressed as:

$$
\hat{CH}_1[n,k] = \frac{r[n,k]S^*_1[n,k] - r[n,k+1]S^*_2[n,k]}{|S_1[n,k]|^2 + |S_2[n,k]|^2} (8)
$$

$$
\hat{CH}_2[n,k] = \frac{r[n,k]S^*_2[n,k] - r[n,k+1]S^*_1[n,k]}{|S_1[n,k]|^2 + |S_2[n,k]|^2} (9)
$$

Therefore simply by replacing CH_1 and CH_2 in equation (6) and (7) by \hat{CH}_1 , \hat{CH}_2 in equation (8) and (9) it can be deduced :

$$
\hat{S}_{i+2}[n,k] = \hat{CH}_1[n,k]r[n,k+2] + \hat{CH}_2[n,k]r^*[n,k+3] (10)
$$

$$
\hat{S}_{i+3}[n,k] = \hat{CH}_2[n,k]r[n,k+2] - \hat{CH}_1[n,k]r^*[n,k+3] (11)
$$

Where $i = 1,3,5,....,N-4$

The proposed method is simple and cost , computation effective.

4. PROPOSED CHANNEL EQUALIZATION METHOD

The channel equalization is the most important part as it reduces the ISI affect and improve the BER of the system. In this paper the channel equalization is done using Scale Conjugate Gradient Method. SCG is used to train the feed forward neural network. The neural network used in our system Consist of three layers: Input, hidden and output. The number of nodes used in input layer are three, hidden Layer are ten and in the output layer the nodes are two. The transfer function used for input is Logistic Sigmoidal and for hidden layer is purelin. Linear is selected for the output. Figure 2 shows the model of the Neural Network Used for simulation.

5. SIMULATION RESULTS

After the network is trained using the SCG method three parameters Such as channel length, signal length and channel noise are inputted to the network. For our simulation we have used signal length as 500, channel length as 20 and channel noise as 5. The simulation is done on MATLAB R2013a. Three different parameters Symbol Error Rate (SER), Bit Error Rate (BER) and Minimum mean square error (MMSE) are plotted against different values of Signal to noise ratio (SNR).

The results are tabulated in Table 2 and plotted in figure 3.

![Figure 2: NN based Channel Equalizer](image)

Table 2 : SNR VS BER/SER/MMSE

<table>
<thead>
<tr>
<th>SNR</th>
<th>BER</th>
<th>SER</th>
<th>MMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.1519</td>
<td>0.5964</td>
<td>0.1484</td>
</tr>
<tr>
<td>5</td>
<td>0.1078</td>
<td>0.1858</td>
<td>0.0769</td>
</tr>
<tr>
<td>10</td>
<td>0.0488</td>
<td>0.0589</td>
<td>0.0377</td>
</tr>
<tr>
<td>15</td>
<td>0.0181</td>
<td>0.0193</td>
<td>0.0188</td>
</tr>
<tr>
<td>20</td>
<td>0.0061</td>
<td>0.0062</td>
<td>0.0054</td>
</tr>
<tr>
<td>25</td>
<td>0.0022</td>
<td>0.0023</td>
<td>0.0021</td>
</tr>
<tr>
<td>30</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0006</td>
</tr>
<tr>
<td>35</td>
<td>0.0006</td>
<td>0.0006</td>
<td>0.0005</td>
</tr>
<tr>
<td>40</td>
<td>0.0005</td>
<td>0.0005</td>
<td>0.0003</td>
</tr>
</tbody>
</table>

![Graph 1. SNR/SNR/VS SER](image)

In Graph 1 the Symbol Error rate (SER) are plotted against the two quantities signal to noise ratio (SNR) and Symbol to noise ratio (SMNR). Initially both behaves in the same manner but the slope of SMNR are more steep and both are coincide at the higher values.
In different fading conditions (impossible to)

- 5
- 15
- 30
- 40

- verified that
- Channel Estimation for
- MIMO-OFDM System”, London

- Mrs. Humberto Spagnolini, “Pilot Based
- Estimation for OFDM Systems by Tracking
- IEEE Journal on Wireless

- Tian-Ming Ma, Yu-Song Shi and Tying-Guan
- “A Low Complexity MMSE for OFDM Systems

- D. Geshert, M. Shafi, S. Da-shan, P. J. Smith, and A.
- Naguib, “From theory to practice: an overview of MIMO
- space-time coded wireless systems,” IEEE Journal on
- Selected Areas in Communications, vol. 21, pp. 281-302,

- Xiang Li, Wen-De Zhong, Arokiaswammi Alphones
- and Changyuan Yu, “Channel Equalization Using
- Independent

- Component Analysis in PDM-CO-OFDM,”IEEE
- Photonics Technology Letters, Vol 26, No 5, pp 497
distortion correction for OFDM direct conversion

- and correction of transmitter-caused I/Q imbalance
- in OFDM systems,” in Proc. 7th Intl. OFDM Workshop,

- imbalance compensation method with pilot-signals for

- A. Tarighat, R. Bagheri, and A. Sayed, “Compensation
- schemes and performance analysis of IQ imbalances in

- Saroj K. Meher, Ashish Ghosh*, B. Uma Shankar and
- Lorenzo Bruzzone, “ Neuro-Fuzzy Fusion: A New
- Approach to Multiple Classifier System”, 9th IEEE
- International Conference on Information Technology
- (ICIT06), 2005.

- Ibnkahla, M., “Application for Neural Networks to Digital
- Communications-A survey”, Signal Processing, 80, pp

- S. M. Alamouti, “A simple transmit diversity technique
- for wireless communications,” IEEE Journal on Selected

- Mehmet Kernal Ozdemir and Huseyin Arslan, “ Channel
- Estimation For Wireless OFDM System”, IEEE

6. CONCLUSION

Wireless transmission of digital signals through multipath
frequency selective channels can be done in perfect way using
OFDM technique. OFDM can mitigate distortion caused by
frequency selective fast fading channels as in OFDM the same
copy of the data message can be obtained at the receiving end
each experience different fading conditions (impossible to
have deep fading at all the links) so the reception process can
be performed in better manner as evident from graph 2.

The performance of the STBC-OFDM receiver depends
mainly on the channel equalization stage. It has proven that
NN based equalizers are very effective in dealing this kind of
problem which is true from the graph 3.

7. REFERENCES

[2] Estimation and Equalization Techniques for
- OFDM Systems”, Circuits and Systems:
- Antenna International Journal (CSIU), Vol 1, No 1, January
- for

- Equalization Systems.” IEEE Transaction on

2010. Delestre F and Sum Y, “Pilot Added Channel
Estimation for MIMO-OFDM System”, London
Communication Symposium 2009.

Channel Estimation for OFDM Systems by Tracking
the Delay Subspace”, IEEE Transaction on Wireless

Low Complexity MMSE for OFDM Systems Over
Frequency Selective Fading Channels”, IEEE

Naguib, “From theory to practice: an overview of MIMO
space-time coded wireless systems,” IEEE Journal on
Selected Areas in Communications, vol. 21, pp. 281-302,
2003.

[7] Xiang Li, Wen-De Zhong, Arokiaswammi Alphones
and Changyuan Yu, “Channel Equalization Using
Independent

Photonics Technology Letters, Vol 26, No 5, pp 497
distortion correction for OFDM direct conversion

and correction of transmitter-caused I/Q imbalance
in OFDM systems,” in Proc. 7th Intl. OFDM Workshop,

imbalance compensation method with pilot-signals for

schemes and performance analysis of IQ imbalances in

[12] Saroj K. Meher, Ashish Ghosh*, B. Uma Shankar and
Lorenzo Bruzzone, “ Neuro-Fuzzy Fusion: A New
Approach to Multiple Classifier System”, 9th IEEE
International Conference on Information Technology
(ICIT06), 2005.

[13] Ibnkahla, M., “Application for Neural Networks to Digital
Communications-A survey”, Signal Processing, 80, pp

for wireless communications,” IEEE Journal on Selected

Estimation For Wireless OFDM System”, IEEE

8. AUTHOR PROFILE

Prof. Zainul Abdin Jaffery obtained his B. Tech and M.
Tech. in Electronics and Communication Engineering from
Aligarh Muslim University, Aligarh, India in 1987 and 1989
respectively. He obtained his PhD degree from Jamia Millia
Islamia (a central Govt. of India University) in 2004. Dr.
Jaffery started his carrier as lecturer at Jamia Millia Islamia in
1990. Presently he is working as Professor in the Department
of Electrical Engineering, Faculty of Engineering and
Technology, Jamia Millia Islamia, New Delhi, since 2010. Prof. Jaffery has published more than fifty research papers in the area of Electronics and communication engineering in refereed international/national journals and conferences. His research area includes applications of soft computing techniques in signal and image processing. Prof. Jaffery is a member of various academic societies of national and international repute.

Zeeshan Ahmad Abbasi obtained his Bachelor’s degree in Electronics and Communication with Honors from Jamia Millia Islamia, Delhi India. Then he obtained his Master’s degree in Communication from Delhi College of Engineering, University of Delhi. He is pursuing his Ph.D from JMI Delhi. He has worked for 20 years in Police Communication, Ministry of Home affairs, Government of India on VSAT Networks and HF, VHF Communication. He has taught various Electronics and Communication Engineering papers at many reputed Universities like Jamia Millia Islamia, Hamdard University, Delhi University, Maharishi Dayanand University, IGNOU etc.