
International Journal of Computer Applications (0975 - 8887)
Volume 132 - No.3, December 2015

Application Method-based Efficient Offloading Scheme
in Mobile Cloud Computing

Ahmed A.A. Gad-ElRab
Department of Mathematics

Faculty of Science
Al-Azhar University, Cairo, Egypt

T.A.A. Alzohairy
Department of Mathematics

Faculty of Science
Al-Azhar University, Cairo, Egypt

Farouk A. Emara
Department of Mathematics

Faculty of Science
Al-Azhar University, Cairo, Egypt

ABSTRACT
Mobile Cloud Computing is a new paradigm that transfers the data
storage and the data processing from a mobile device to a power
full cloud server which has a big storage. Mobile cloud applica-
tions use offloading schemes to move the computing power and
data storage away from mobile phones into this cloud server. How-
ever,for a code compilation, offloading might consume more en-
ergy than the local processing of data when the size of code is
small. So, a new offloading schemes are needed to be adaptive with
the code size of an application or a service. This paper introduces a
new method-based offloading scheme for mobile application. The
proposed scheme divides each mobile application into presentation
layer, logical layer and data access layer. Also, it considers each
service or process in each layer as a set of methods. The meth-
ods of presentation layer resides on the mobile device, the methods
of data layer is fully deployed on the cloud to minimize the data
access, and the methods of logic layer is distributed between the
cloud and mobile device by using formulated cost model which
takes into account energy, memory, time, and data transfer delay
costs. The conducted simulation results show that the offloading
performance of the proposed scheme is much better than local pro-
cessing scheme.

Keywords
Application partitioning, Battery Consumption, Mobile cloud com-
puting,Offloading

1. INTRODUCTION
Mobile Cloud Computing refers to an infrastructure where both the
data storage and the data processing happen outside of the mobile
device. Mobile cloud applications move the computing power and
data storage away from mobile phones to the cloud which brings
applications and mobile computing to not just smartphone users
but a much broader range of mobile subscribers[1]. Computation
offloading offloads intensive methods of mobile applications to
run remotely on rich resource such as cloud. In case of code
compilation, offloading might consume more energy than that of
the local processing when the size of codes is small. So, offloading
is not always the effective way to save energy of a mobile device.
For example, when the size of altered codes after compilation is
500 KB, offloading consumes about 5% of a device’s battery for
its communication while the local processing consumes about 10%

of the battery for its computation. In this case, the offloading can
save the battery up to 50%. However, when the size of altered
codes is 250 KB, the efficiency reduces to 30%. Also computation
offloading may require a large amount of data to be transferred on
runtime, then higher latencies may occur.

In recent years, a lot of studies have been appeared to sup-
port remote execution for mobile applications on the cloud to
increase the performance and reduce energy consumption[2, 3].
Generally, there are two main approaches which are introduced to
perform remote execution. The first approach is to use full process
or full VM (Virtual Machine) migration as in CloneCloud[4].
The full process or VM can be migrated to the rich infrastruc-
ture to execute remotely. While the second approach is only
offloading intensive methods or services of applications to execute
remotely[5, 6]. This approach leads to large energy saving because
it is fine grained applications. This means that it can remote only
the sub-parts that benefit from remote execution[5, 7].
The main problems of the first approach are: (1) access to native
resources that are not virtualized already and are not available on
clone, (2) may be offloading task not correct if it consumes energy
more than running local, and (3) computation offloading may
be requires a large amount of data to be transferred on runtime,
then higher latencies may occur. While the main problems of the
second approach are:(1) the cost model has focused so far only
on the client side(mobile device) and has assumed the server’s re-
sources(cloud) to be infinite[6]. (2) CPU consumption and energy
consumption are not including into the optimization problem[6].
(3) offloading software block (bundle) needs high bandwidth [6].
(4) solving the optimization problem for all methods in application
that are marked as remote method this consume energy[5]. (5)
memory cost is not including into the optimization problem [5]. (6)
if the programmer forgets to mark methods (for remote execution),
MAUI will not be able to offload those methods [5]. (7) MAUI
does not consider the execution time in its optimization cost
however it can predict the execution of a method [5].
In this paper to solve these problems method-based offloading
scheme for mobile application is proposed. The proposed scheme
divides each mobile application into three layers:(1) presentation
layer, (2) logical layer and (3) data access layer. Also, it considers
each service or process in each layer as a set of methods. The
methods of presentation layer resides on the mobile device, the
methods of data layer is fully deployed on the cloud to minimize
the data access, and the methods of logical layer is distributed

1

International Journal of Computer Applications (0975 - 8887)
Volume 132 - No.3, December 2015

between the cloud and mobile device by using formulated cost
model which takes into account energy, memory, time, and data
transfer delay costs.
The rest of this paper is organized as follows: the related work will
be introduced in Section 2. Section 3 describes offloading problem
formulation in MCC. Section 4 explains the proposed scheme.
Section 5 introduces the simulation and qualitative evaluation of
the proposed scheme and Section 6 concludes the paper.

2. RELATED WORK
In recent years, a lot of studies have been appeared to support re-
mote execution for mobile applications on the cloud[4, 5, 6]. In the
rest of this section, these related work will be introduced in details.

2.1 CloneCloud
CloneCloud is introduced by B. Chun[4] in 2011. The concept of
clonecloud is based on creating virtual Smartphone on the cloud.
The virtual Smartphone on the cloud has more hardware, soft-
ware, network and energy which provides more suitable environ-
ment to process complicated tasks. The partitioning mechanism in
CloneCloud is divide the application into software blocks based on
energy consumption intensive or computing. Some of this block
will be running on the Smartphone and other will be running on the
clone (virtual Smartphone on the cloud). Once the virtual Smart-
phone is available, then the Some computing or energy-intensive
blocks will be offloaded to cloud for processing. Once those exe-
cution blocks have been completed, the output will be passed from
virtual Smartphone on the cloud to the Smartphone.
The main disadvantages of CloneCloud approaches are: (1) access
to native resources that are not virtualized already and are not avail-
able on clone. (2) may be offloading task not correct if it consumes
energy more than running local. (3) computation offloading may
require a large amount of data to be transferred on runtime, then
higher latencies may occur.

2.2 Giurgiu et al. Model
Giurgiu et al.[6] proposed a model that focuses on offloading inten-
sive parts of applications to execute remotely on the cloud/server.
The main objective of this model is to optimize latency, data trans-
fer delay and cost. The core method of this model using R-OSGi[8]
and AlfredO[9] frameworks for the management and deployment
of applications. R-OSGi is an enhanced version of OSGi that sup-
ports multiple VMs residing on distributed servers, whereas the pri-
mary objective of OSGi is to assist with the decomposition and cou-
pling of applications into modules, called bundles. The proposed
model divides each mobile application into presentation layer, log-
ical layer and data access layer. AlfredO distributes the bundles of
layers between the Smartphone and server . The bundles of presen-
tation layer reside on the Smartphone while the bundles of logical
layer are distributed between the server and the Smartphone. More-
over, the bundles of data layer is fully deployed on the server to
minimize the data access delay.
The main disadvantages of Giurgiu et al. are:(1) the cost model
has focused so far only on the client side(mobile device) and has
assumed the server’s resources(cloud) to be infinite.(2) CPU con-
sumption and energy consumption are not including into the opti-
mization problem and (3) offloading software block (bundle) needs
high bandwidth

2.3 MAUI Model
MAUI[5]Provides fine-grained application code offloading with
minimum programmer intervention. The main objective of this
model is to minimize energy consumption of mobile devices, which
is the foremost challenge of the mobile industry. Therefore, MAUI
offloads all the resource intensive methods to the nearby infras-
tructure or cloud, provided the offloading is beneficial in terms of
energy. MAUI uses a profiler (optimization engine) that analyzes
energy consumption involved in the local and remote execution of
the code. Moreover, MAUI profiles offload methods and use history
based approach to predict the execution time of a particular code.
Therefore, if the remote execution is beneficial in terms of energy,
then the code is offloaded to the nearby infrastructure. In MAUI,
the application partitioning is dynamic and the offloading is done
on the basis of methods instead of complete application modules
to minimize the offloading delay. However, MAUI creates two ver-
sions of smartphone application, for local and remote execution us-
ing Microsoft .NET Common Language Runtime (CLR). In MAUI,
the mobile device consists of three main components, i.e., solver
interface, profiler and client proxy. The solver interface provides
interaction with the solver (decision engine) and facilitates the of-
floading decision making. The profiler collects information regard-
ing the application energy consumption and data transfer require-
ments. The client proxy deals with the method offloading and data
transfer. Similarly, the server side consists of profiler, server proxy,
solver and controller. However, the working of a profiler and server
proxy is similar to the smartphone. The solver is the main decision
engine of the MAUI that holds the call graph of the applications and
the scheduled methods. Lastly, the controller is responsible for the
authentication and resource allocation for incoming requests. How-
ever, single method offloading is less beneficial compared to com-
bined methods (multiple methods) offloading. Another weakness
of MAUI is that if the programmer forgets to mark methods (for re-
mote execution), MAUI will not be able to offload those methods.
Also, MAUI does not consider the execution time in its optimiza-
tion cost however it can predict the execution of a method. Nev-
ertheless, the MAUI profilers consume processing power, memory
and energy, which is an overhead on the smartphones.
To solve the before mentioned problems of current approaches, a
new application method-based offloading scheme is proposed. The
proposed model divides an application into three layers: (1) presen-
tation layer which contains user interface and resides on the smart-
phone, (2) logical layer which contains computation methods and is
distributed between the cloud and the smartphone according to de-
termined optimal cost which takes into account memory constrain,
and (3) data layer which contains data and data access method and
is fully deployed on the cloud to minimize the data access over the
data layer. Instead of offloading a whole service or a whole applica-
tion to the cloud, the proposed model works with methods of each
service by adaptively offloads some of the logical layer methods of
a service based on a determined cost model.

3. OFFLOADING PROBLEM IN MCC
3.1 Problem Description
In MCC, due to the resource-limited devices (i.e., Mobile devices)
that contact with the resourceful machines (i.e., cloud servers), mi-
grating the large computations and complex processing of certain
services or methods from these devices to the servers is required to
minimize energy consumption of mobile devices. This migrating
process is called Offloading process. The decision of computation
offloading is an extremely complex process and is affected by the

2

International Journal of Computer Applications (0975 - 8887)
Volume 132 - No.3, December 2015

nature of the application. For instance, an application that requires
local hardware resources (GPS, camera, and sensors) may not be
able to execute in the cloud unless the application is partitioned
into components, and local-resource independent components are
moved to the cloud. However, offloading is not always the effec-
tive way to save energy. Therefore, the offloading problem is how
services or methods can be offloaded such that the mobile devices
can save their energy with keeping a high service performance and
minimum time delay.
In the reset of this section, the problem assumptions and models
will be described. Then, the offloading problem will be formulated.

3.2 Assumptions and Models
The MCC model consists of a mobile node MN and a cloud server
node CS. MN can communicate with CS by using advanced wire-
less technology to exchange data, applications, and services. In ad-
dition, the set of assumptions that must be met in this MCC model
are (1) there are developers can apply the Model-view-controller
(MVC) [10] design pattern explicitly and rigorously to isolate the
application logical layer from the user interface and data layer of
any mobile application,(2) any method that interacts with a user
or needs to access device hardware will belong to a user interface,
(3) the energy consumption of each hardware component of MN
such as LCD, CPU and Wi-Fi can be measured separately by using
a measurement application model for the energy consumption on
a mobile device (e.g., Android phone) on the fly[11], and (4) any
mobile application consists of a set of methods and each method
consists of a set of instructions that can be determined at run time.
The set of methods in a logical layer of a certain service which can
be offloaded is denoted as SM ={mi, 1 ≤ i ≤ n}. Each mi ∈
SM has several metadata properties as memory cost, memi and
code size, codei.The number of instructions in a code size codi of
a method iis denoted as I . The data size is needed for a method
i to be sent or received are denoted by sendi,s and recvi,r , re-
spectively. In addition, the speed of executing any instruction by a
mobile node is denoted by SpeedMN . Finally, there are n methods
that can be offloaded for an application or a service.

3.3 Problem Formulation
To formulate the offloading problem in MCC, firstly, the local and
offloading costs for methods will be modeled based on before men-
tioned assumptions and models. The local time execution, Ti,local

for a service i can be determined by using the number of instruc-
tions I and mobile execution speed SpeedMN as follows:

Ti,local =
I

SpeedMN

(1)

The local energy consumption, Ei,local for a service i can be deter-
mined by using the number of instructions I and mobile execution
speed SpeedMN .

Ei,local = Pi,local ∗ Ti,local (2)

Where Pi,local is the power for a local execution per second.
Here, xi is introduced for a method i, which indicates whether the
method i is executed locally or remotely(xi =1 if a method i runs
remotely and 0 if it runs local).By using xi, the data sizes which
will be sent, Di,s, and recieved, Di,r , are defined as follows.

Di,s = sendi ∗ xi (3)

Di,r = reci ∗ xi (4)

The time cost for offloading a method i to remote cloud, Ti,offload,
can be expressed as the sum of taking time during waiting w period
for getting results from the cloud and transferring time(including
sending and receiving)as follows.

Ti,offload = (
I

Speedcloud
+

Di,s

Bi,s

+
Di,r

Bi,r

) (5)

where Speedcloud is the remote execution speed(cloud speed). Bi,s

and Bi,r are the bandwidth for sending and receiving, respectively.
The energy cost for offloading a method i to a remote cloud,
Ei,offload, can be expressed as the sum of energy consumption
during waiting period for getting results from a cloud Ei,idle , and
transferring (including sending Ei,s and receiving Ei,r) as follows.

Ei,offload = Ei,s +Ei,idle +Ei,r (6)

where Ei,idle can be expressed as multiplying of the idle time of
the mobile device for waiting to get a result from the cloud, ti,idle
and the power idle consumption per second Pi,idle.

Ei,idle = Pi,idle ∗ ti,idle (7)

The energy consumption for sending data, Ei,s can be expressed as
multiplying of the time for sending data from mobile to cloud, ti,s
and the power consumption for sending data from mobile to cloud
per second, Pi,s.

Ei,s = Pi,s ∗ ti,s (8)

The energy consumption for receiving data from cloud, Ei,r can be
expressed as multiplying of the time for receiving data from cloud
ti,r and the power consumption for receiving data from cloud per
second Pi,r .

Ei,r = Pi,r ∗ ti,r (9)

The idle time of a mobile device during waiting period for getting
a result from a cloud server can be treated as the execution time of
a remote cloud, so Ei,offload can be written as follows.:

Ei,offload =
Pi,idle ∗ I
Speed

+
Pi,s ∗Di, s

Bi, s
+

Pi,r ∗Di, r

Bi, r
(10)

By using Eq. 1 and Eq. 5, the total cost of execution time for n
methods is

Ctime =

n∑
i=1

(Ti,local ∗ (1− xi) + Ti,offload ∗ xi) (11)

Also, by using Eq. 2 and Eq. 10, the total cost of energy consump-
tion for n methods is

Cenergy =

n∑
i=1

(Ei,local ∗ (1− xi) +Ei,offload ∗ xi) (12)

Note that, the memory cost on the mobile device for n methods that
run local can be calculated as follows.

Cmemory =

n∑
i=1

memi ∗ (1− xi) (13)

In addition, the data transfer cost for a remote execution of n meth-
ods, that includes the transfer cost of its related methods which are
not at the same execution location. If the output of one method is
an input of another is determined by the following equation

Ctranfer =

n∑
i=1

codi ∗ xi +

n∑
i=1

k∑
j=1

tri ∗ (xiXORxj) (14)

3

International Journal of Computer Applications (0975 - 8887)
Volume 132 - No.3, December 2015

where k is the number of related methods. By using Equations
11,12,13, and 14, the total overall cost for n methods can be written
as :

Ctotal = Ctranfer ∗Wtr + Cmemory ∗Wmem

+ Cenergy ∗Wenergy

+ Ctime ∗Wtime

(15)

where Wtr,Wenergy,Wtime,Wmem are the weights of transfer-
ring, energy, time, and memory costs, respectively. These weights
represent the importance of these costs in the offloading process
such that the sum of these weights must equal 1 as follows.

Wtr +Wmem +Wenergy +Wtime = 1 (16)

Here, the solution x1, x2...xn represents the required offloading
partitioning of the application.
The objective goal of offloading problem in MCC is minimizing
the overall cost Ctotal as much as possible such that takes into ac-
count the resources constraints of a mobile device. So, the objective
function of this problem can be written as follows.

min
x∈0,1

Ctotal (17)

Such that

n∑
i=1

memi ∗ (1− xi) ≤ availmemory (18)

Cenergy ≤ availenergy (19)

where constraint 18 means that the memory cost of a resident
method can not be more than available memory on the mobile de-
vice. constraint 19 means that the energy cost of can not be more
than available energy of the mobile device.

4. PROPOSED ALGORITHM
4.1 Basic Idea
In this section, to solve the offloading problem which was described
and formulated in the previous section, the proposed offloading
scheme will be introduced. The proposed scheme is called Appli-
cation Method-Based Efficient Offloading Scheme (AMBEO).The
basic idea of AMBEO is based on five issues: (1) dividing each mo-
bile application into three layers: presentation layer, logical layer
and data access layer, (2) considering each service or process in
each layer as a set of methods, (3) the methods of presentation
layer resides on the mobile device, (4) the methods of data layer
is fully deployed on the cloud to minimize the data access, and (5)
the methods of logic layer is distributed between a cloud server
and a mobile device by using formulated cost model which was de-
scribed in Section 3. Based on these five issues , the architecture of
AMBEO is shown in Fig. 1.

4.2 Proposed Algorithm
AMBEO consists of two phases based on its basic ideas. The first
phase is called Profile phase which determines the current value
of a mobile, cloud server, each method in the logical layer, net-
work conditions as bandwidth. While the second phase is called
Decision phase which determines which method will be run on a
mobile device or on a cloud based on the information that are calcu-
lated by using the profile phase, and the local and offloading costs
as described in section 3. In the rest of this section, the detailed
description of these two phases will be introduced.

Logical layer

Mobile device

Presentation layer

Logical layer

Cloud server

Data layer

User interaction or using
device hardware

Sending result or data

Fig. 1: Architecture of AMBEO

Profile Phase

Device Profiling Cloud Profiling Method Profiling

Network

Profiling

Decision Phase

Frist execution

time

Consequent execution time

Test the parameter in the model (ex. available memory,

network bandwidth)

Unchanged Changed

Do comparison

between I and Iact

Low Medium
High

Take a decision

Repeat Profiling and Decision

phases as Frist execution time

Take the same decision

in the previous

execution time Repeat Profiling and Decision

phases as Frist execution time

Fig. 2: AMBEO phases

4.2.1 Profile Phase. at runtime, before each method is invoked,
AMBEO determines whether the method invocation should run lo-
cally or remotely. So, AMBEO measures the characteristics of a
mobile device and a cloud server at the initialization time and it
continuously monitors the network characteristics because these
can often change and a stale measurement may force algorithm to
make the wrong decision on whether a method should be offloaded
or not. Therefore, the profile phase contains four profiling compo-
nents: Mobile device profiling, a cloud server profiling, a method
profiling and a network profiling. These four profiling components
are determined and monitored as follows.

* Device Profiling: In this profiling, AMBEO determines an en-
ergy consumption of a mobile device by using a measurement
application model for the energy consumption on a mobile de-
vice (e.g. Android phone) on the fly [11]. There is an online
power estimation system that has been implemented for An-
droid platform smartphones. PowerTutor provides accurate, real
time power consumption estimates for power-intensive hardware
components including CPU and LCD display as well as GPS,
Wi-Fi, audio, and cellular interfaces[11, 12]. Also,Little Eye[13]

4

International Journal of Computer Applications (0975 - 8887)
Volume 132 - No.3, December 2015

software used to measure the values of a processor speed, the
available memory of a mobile, battery consumption, amount of
data transfer and memory used.

* Cloud Profiling: In this profiling, AMBEO determines the value
of a processor speed of a cloud server. AMBEO assumes that this
value can be determined by using some means from the cloud.

* Method Profiling: In this profiling, AMBEO determines which
the method belongs to a presentation layer, a logical layer or a
data layer by using meta-data that stored in a manifest file and
Java reflection such as OSGi[14] which has been traditionally
used to decompose and loosely couple Java applications into
software modules. Then, for each method that belongs to the log-
ical layer it determines the characteristics of the methods such
as code size, memory used and amount of data transferred by
running a method on the device by using Little Eye Eyee[13]
software.

* Network Profiling: In this profiling, AMBEO monitors the net-
work and gathers all information about the network as Internet
connection availability of a mobile device and the current band-
width of the network to show its quality. This information can be
obtained by using one of existing android APIs[15].

4.2.2 Decision Phase. In this phase, the offloading decision of a
method depends on four factors:1) characteristics of mobile device
2) characteristics of the cloud 3) characteristics of methods such as
input, output and code size 4) characteristics of network as network
bandwidth.
For each method, there are two execution cases: first execution time
case which means that this method will be run for the first time for
a current running application and consequent execution time case
which means that this method will be run for second time or more.
These two cases are described as follows.

* First execution time : If a method will be run for the first time,
AMBEO decides the following issues: (a) The methods of pre-
sentation layer will be run on a mobile device because there is a
need for a user interaction or an access to a certain devices hard-
ware. (b) The methods of data layer are fully deployed on the
cloud if a remote server is available to minimize the data access.
If a disconnect occurs, AMBEO resumes and runs the method
on the mobile device, in this case, the application’s energy con-
sumption only incurs a small penalty cost due to offloading the
method to the cloud. (c) The methods of logical layer will be run
as follows:
(1) If a disconnect occurs, AMBEO runs the method on the mo-
bile device. In this case, the application’s energy consumption
only incurs a small penalty cost due to offloading to the cloud.
(2) If a cloud server is available and a memory cost of a method
is larger than the available memory, the method will be run on
the cloud. (3) If a cloud server is available and a memory cost
of method is less than available memory, AMBEO executes the
following steps: (i) calculate the time local and the energy con-
sumption local costs by using Eqs. 1 and 2. Also, calculates the
memory local cost for this method. (ii) calculates the time of-
floading and the energy consumption offloading costs by using
Eqs. 5 and 10. Also, calculates data delay transfer cost which is
represented by the sum of code size and receiving and sending
data costs. (iii) if the total local cost is larger than the total of-
floading cost, the method will be run on the cloud otherwise the
method will be run on the mobile device. (iv) saves the offload-
ing decision (i.e., value of xi) and the actual execution time of
method, Tact. This actual execution time can be used to deter-
mine the actual number of instruction, Iact, of this method with

respect to the number of instruction of a method which is defined
in Eq. 1 or Eq. 5 according to xi see Algorithm 1.

* Consequent execution time: This time means that a method will
be run for second or more times. In this case, there are two cases
of the model parameters as available memory or network band-
width. (1) Changed case: this means that the values of these pa-
rameter are changed from their earlier values in the previous run.
In this case, AMBEO repeats the two phases, Profiling and De-
cision phases as the first execution time.

Algorithm 1 AMBEO algorithm
input Smobile, Scloud, Ps, Pidel, Plocal, Pr, availmemory, B,Ds,Dr

1: for i=1 to i=n do
2: if memi > availmemory then
3: xi = 1
4: else
5: I ← getcodsizeofmethode(i)

6: Tilocal ← I
Smobile

7: Eilocal ← Plocal∗I
Smobile

8: Tioffload ← (I
Scloud

+ Ds
Bs

+ Dr
Br

)

9: Eioffload ← Pidle∗I
Scloud

+ Ps∗Ds
Bs

+ Pr∗Dr
Br

10: Clocal ←Wtime ∗ Tlocal +Elocal ∗Wenergy +memi ∗
Wmem

11: tri ←Ds +Dr

12: Ctransfer ← codi + tri

13: Coffload ←Wtime ∗ Toffload +Eoffload ∗Wenergy +
Ctransfer ∗Wtr

14: if Coffload < Clocal then
15: xi = 1
16: else
17: xi = 0
18: end if

19: end if
20: if xi = 0 then
21: Iact =

I∗Tact
Tlocal

22: else
23: Iact =

I∗Tact
Toffload

24: end if
25: end for

(2) Unchanged case: this means that the values of these param-
eters are not changed from their earlier values in the previous
run. In this case, AMBEO compares the number of instructions
of a method, I (which determine in method proling step) and
the actual number of instructions, Iact to determine the chang-
ing degree of these parameters. If the result is in the period
[0.0,0.2], the change is called Low and if the result is in the
period [0.21,0.6] the change is called Medium. Otherwise the
change is called High. In case of Low change, AMBEO takes

5

International Journal of Computer Applications (0975 - 8887)
Volume 132 - No.3, December 2015

the same decision in the previous execution time. while, in case
of Medium or High AMBEO repeats the two phases of AMBEO
as the first execution time as shown in Fig. 2.
Algorithm 1 shows the steps of AMBEO scheme. In Steps 2 and
3, AMBEO compares the needed memory cost and the available
memory for n methods in the logical layer. In Steps 5 to 13, AM-
BEO calculates the cost for running a method on the mobile de-
vice and the cost for running a method on the cloud server if the
memory cost is more than the available memory. In Steps 14 to
19, AMBEO compares the cost for running a method on the mo-
bile device and the cost for running a method on the cloud server
and determines the value of xi which indicates the offloading of
a method to the cloud or not. In Steps 20 to 25, AMBEO saves
the information for future decisions.

5. SIMULATION RESULTS AND QUALITATIVE
EVALUATIONS

In this section, the simulation results will be presented to show
the offloading performance of running a method by using AMBEO
comparing to performance of running it on a mobile locally. Also,
the qualitative comparison between AMBEO and other offloading
schemes will be presented in the end of this section.

5.1 Simulation Outline
Firstly, AMBEO is implemented by using c++ programing lan-
guage. Due to the difference between the methods of mobile cloud
application and network bandwidth, different scenarios are gener-
ated for method input, method code size, method output and net-
work bandwidth (four scenarios). The simulation parameters as
mobile processor speed, cloud processor speed, consumed power
by mobile in ideal case, and consumed power by mobile for send-
ing and receiving data are shown in Table 1.

Table 1. : Simulation Parameters.

Parameter Value
Mobile processor speed 0.6 GHz
Cloud processor speed 2.8 GHz
Mobile available ram 256 MB
Consumed power by mobile in ideal case 0.89 J
Consumed power by mobile for sending data 1.6 J
Consumed power by mobile for receiving data 1.6 J

5.2 Simulation Results and Analysis
* Scenario A: In this scenario, AMBEO uses the values for method

input, method code size, method output and network bandwidth
as shown in Table 2 to compare the cost of a running method
locally and the cost of running method by using AMBEO. Fig

Table 2. : Scenario A: cost parameters Vs. network bandwidth.

Parameter Value
Method input 20 Kb
Method output 100 Kb
Code size of method 2000 Kb
Bandwidth 10-1500 Kbps

0

50

100

150

200

250

300

350

400

450

500

E
x

e
c
u

ti
o

n
 c

o
s
t

bandwidth in kB/S

 cost local

ABMEO

Fig. 3: cost vs network bandwidth

-3 shows the cost of running method on local device and by us-
ing AMBEO against the network bandwidth. As shown in Fig.
3, the cost of AMBEO and locally running are equal when the
bandwidth is less than or equal to 700 Kbps. While the cost of
AMBEO decreases as bandwidth increases and is much lower
than the cost of running local when the bandwidth is larger than
700 Kbps. This is because, AMBEO considers the cost transfer
which decreases as the bandwidth increases. as a result, the total
cost of running method remotely decreases.

* Scenario B: In this scenario, AMBEO uses the values for method
input, method code size, method output and network bandwidth
as shown in Table 3 to compare the cost of a running method lo-
cally and the cost of running method by using AMBEO. Fig. 4.
shows the cost of running method on local device and by using
AMBEO against the code size. As shown in Fig. 4, the cost of
AMBEO and locally running increases as codes size increases.
Also, the two costs are equal when the bandwidth is less than or
equal to 600 Kbps. While the cost of AMBEO is lower than the
cost of running local when the code size is larger than 700 Kbps.
This is because, when the code size of method is high (i.e., num-
ber of instructions of method is high) and the processor speed
of cloud is higher than the processor speed of mobile device, the
cost of running on the cloud is less than the cost of local running.

Table 3. : Scenario B: cost parameters Vs. Method cod size.

Parameter Value
Method input 20 Kb
Method output 100 Kb
Code size of method 100-1250 Kb
Bandwidth 3 Mbps

Table 4. : Scenario C: cost parameters Vs. Method output.

Parameter Value
Method input 20 KB
Method output 0-390 KB
Code size of method 1000 KB
Bandwidth 3 Mbps

6

International Journal of Computer Applications (0975 - 8887)
Volume 132 - No.3, December 2015

0

50

100

150

200

250

300
E
x
e

c
u

ti
o

n
 c

o
s

t

code size in KB

 cost local

AMBEO

Fig. 4: cost vs code size of method

0

50

100

150

200

250

E
x
e

c
u

t
io

n
 c

o
s

t

data send(output)KB

AMBEO

algorithm cost

Fig. 5: cost vs data send(method output)

* Scenario C: In this scenario, AMBEO uses the values for method
input, method code size, method output and network bandwidth
as shown in Table 4 to compare the cost of running method lo-
cally and the cost of running method by using AMBEO. Fig. 5.
shows the cost of running method on local device and by using
AMBEO against the data send size. As shown in Fig. 5, the cost
of AMBEO increases as data send size increases. While the cost
of local running is fixed. Also, the cost of AMBEO is much less
than the cost of local running when the data send size is less than
or equal to 190 kb. While the two costs are equal when the data
send size is larger than 190 kb. This is because, AMBEO de-
cides that running method must run on the local device when the
size of data send is high then the cost of time offloading, energy
offloading, and transfer will be increase.

Table 5. : Scenario D: cost parameters Vs. Method input.

Parameter Value
Method input 0-190 KB
Method output 100 KB
Code size of method 1000 KB
Bandwidth 3 Mbps

* Scenario D: In this scenario, AMBEO uses the values for method
input, method code size, method output and network bandwidth
as shown in Table 5 to compare the cost of running method lo-
cally and the cost of running method by using AMBEO. Fig. 6.

0

50

100

150

200

250

E
x

e
c
u

ti
o

n
 c

o
s
t

data recieved(input) KB

 cost local

AMBEO

Fig. 6: cost vs data received(method input)

shows the cost of running method on local device and by using
AMBEO against the data received size. As shown in Fig. 6, the
cost of AMBEO increases as data received size increases. While
the cost of local running is fixed. Also, the cost of AMBEO is
much less than the cost of local running when the data received
size is less than or equal to 110 kb. While the two costs are equal
when the data received size is larger than 110 kb. This is because,
AMBEO decides that running method must run on the local de-
vice when the size of data received is high then the cost of time
offloading, energy offloading, and transfer will be increase..

5.3 Qualitative Comparison
In this section, the qualitative between AMBEO and some of exist-
ing approaches according to the following criteria:

Adaptive with network change (ANC): This means that the ap-
proaches continuously monitors the network and is adaptive with
network disconnection.

Saving energy (SE): This means that a cost model (optimization
problem) includes the parameter of energy consumption cost .

Memory cost (MC): This means that a cost model (optimization
problem) includes the parameter of memory cost and takes into
account the available memory of the mobile device.

Offloading level (OffL): Usually, from the view of developer
or programmer, the tasks of an application or a service can be
viewed as a set of classes objects, threads, software modules , or
methods. So, the offloading level means that the offloaded enti-
ties which is needed to moved into the cloud are class objects,
threads, software modules, or methods.

Prediction of second execution (PSE): This means that the algo-
rithm can predict the second execution or not.

Minimize data transfer (MDT): this means that a cost model (op-
timization problem) includes the amount of data transfer to avoid
data traffic.
According to the qualitative parameter, the best criteria is as fol-
lows: ANC is Yes, SE is Yes, MC is Yes, OffL is methods, PSE
is Yes, and MDT is Yes. The qualitative evaluation is shown in
Table 6. As shown in Table 6, AMBEO satisfies all requirements
of the best criteria among existing approaches.

7

International Journal of Computer Applications (0975 - 8887)
Volume 132 - No.3, December 2015

Table 6. : Qualitative Comparison

ANC SE MC OffL PSE MDT
[4] No No No threads No NO

[6] Yes No Yes
software modules
(bundles)

No Yes

[5] Yes Yes No methods Yes No
AMBEO Yes Yes Yes methods Yes Yes

6. CONCLUSION
In this paper, the offloading problem in mobile cloud computing
and a lot of studies have been appeared to support remote execution
for mobile applications on the cloud are introduced. In addition,
a new offloading algorithm called AMBEO is proposed. AMBEO
provides method level code offloading which improves the perfor-
mance and save energy of the mobile device. AMBEO can decide
which method will run in local device or must be offloaded into the
cloud based on the cost of its running. The performance of AM-
BEO algorithm has been evaluated through extensive simulation
with different values of network bandwidth, method input, method
cod size, and method output. The simulation results demonstrated
that AMBEO is better than existing approaches in reducing the to-
tal cost of running an application or a service. The future work will
focus on trying to propose new application model for making the
offloading decision that considers the enabling parallelization on
the cloud.

7. REFERENCES

[1] Hoang T Dinh, Chonho Lee, Dusit Niyato, and Ping Wang.
A survey of mobile cloud computing: architecture, applica-
tions, and approaches. Wireless communications and mobile
computing, 13(18):1587–1611, 2013.

[2] Muhammad Shiraz, Abdullah Gani, Rashid Hafeez Khokhar,
and Rajkumar Buyya. A review on distributed application
processing frameworks in smart mobile devices for mobile
cloud computing. Communications Surveys & Tutorials,
IEEE, 15(3):1294–1313, 2013.

[3] A Khan, Mazliza Othman, S Madani, and S Khan. A survey
of mobile cloud computing application models. 2013.

[4] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur
Naik, and Ashwin Patti. Clonecloud: elastic execution be-
tween mobile device and cloud. In Proceedings of the
sixth conference on Computer systems, pages 301–314. ACM,
2011.

[5] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec
Wolman, Stefan Saroiu, Ranveer Chandra, and Paramvir
Bahl. Maui: making smartphones last longer with code of-
fload. In Proceedings of the 8th international conference
on Mobile systems, applications, and services, pages 49–62.
ACM, 2010.

[6] Ioana Giurgiu, Oriana Riva, Dejan Juric, Ivan Krivulev, and
Gustavo Alonso. Calling the cloud: enabling mobile phones
as interfaces to cloud applications. In Middleware 2009,
pages 83–102. Springer, 2009.

[7] Dejan Kovachev, Tian Yu, and Ralf Klamma. Adaptive com-
putation offloading from mobile devices into the cloud. In
Parallel and Distributed Processing with Applications (ISPA),
2012 IEEE 10th International Symposium on, pages 784–791.
IEEE, 2012.

[8] Jan S Rellermeyer, Gustavo Alonso, and Timothy Roscoe. R-
osgi: distributed applications through software modulariza-
tion. In Proceedings of the ACM/IFIP/USENIX 2007 Inter-
national Conference on Middleware, pages 1–20. Springer-
Verlag New York, Inc., 2007.

[9] Jan S Rellermeyer, Oriana Riva, and Gustavo Alonso. Al-
fredo: an architecture for flexible interaction with electronic
devices. In Proceedings of the 9th ACM/IFIP/USENIX Inter-
national Conference on Middleware, pages 22–41. Springer-
Verlag New York, Inc., 2008.

[10] Glenn E Krasner, Stephen T Pope, et al. A description
of the model-view-controller user interface paradigm in the
smalltalk-80 system. Journal of object oriented program-
ming, 1(3):26–49, 1988.

[11] Lide Zhang, Birjodh Tiwana, Zhiyun Qian, Zhaoguang Wang,
Robert P Dick, Zhuoqing Morley Mao, and Lei Yang. Accu-
rate online power estimation and automatic battery behavior
based power model generation for smartphones. In Proceed-
ings of the eighth IEEE/ACM/IFIP international conference
on Hardware/software codesign and system synthesis, pages
105–114. ACM, 2010.

[12] http://powertutor.org/.
[13] http://www.littleeye.co/.
[14] OSGi Alliance. Osgitm service platform, core specification,

release 4, version 4.1, 2007.
[15] https://developer.android.com/reference/android/net/networkcapabilities.html/.
[16] Karthik Kumar and Yung-Hsiang Lu. Cloud computing for

mobile users: Can offloading computation save energy? Com-
puter, 43(4):51–56, 2010.

[17] Mohsen Sharifi, Somayeh Kafaie, and Omid Kashefi. A sur-
vey and taxonomy of cyber foraging of mobile devices. Com-
munications Surveys & Tutorials, IEEE, 14(4):1232–1243,
2012.

[18] Muhammad Shiraz, Md Whaiduzzaman, and Abdullah Gani.
A study on anatomy of smartphone. Computer Communica-
tion & Collaboration, 1:24–31, 2013.

[19] Xinwen Zhang, Sangoh Jeong, Anugeetha Kunjithapatham,
and Simon Gibbs. Towards an elastic application model for
augmenting computing capabilities of mobile platforms. In
Mobile wireless middleware, operating systems, and applica-
tions, pages 161–174. Springer, 2010.

8

	Introduction
	RElATED WORK
	CloneCloud
	Giurgiu et al. Model
	MAUI Model

	 OFFLOADING PROBLEM IN MCC
	Problem Description
	Assumptions and Models
	Problem Formulation

	 PROPOSED ALGORITHM
	Basic Idea
	Proposed Algorithm
	 Profile Phase
	 Decision Phase

	SIMULATION RESULTS AND QUALITATIVE EVALUATIONS
	Simulation Outline
	Simulation Results and Analysis
	Qualitative Comparison

	Conclusion
	References

