
International Journal of Computer Applications (0975 – 8887)

Volume 135 – No.13, February 2016

24

 Proposed Rough Edges of Interface-a Design Pattern

Anand Kr. Shukla
Research Scholar
Invertis University,

 Bareilly

M. Zubair Khan
Deptt. of CS

DAS, Taibah University
Madinah

Saudi Arabia

Jagdish Rai
Professor

Invertis University,
Bareilly

ABSTRACT
Interface of java used as a design pattern for object oriented

software development mostly used with inheritance, in java

multiple inheritance is possible only through the interface this

approach is widely used with modern software development

approach apart from that there is also a rough side of java’s

Interface which discussed in this paper, interface doesn’t

allow the any kind of definition under it, but there is also

some other concept like parent and child class concept if such

concept apply with the interface then the theory of interface

has been changed in this paper a practical approach has been

used for this research problem.

Keywords
Designing pattern, Interface, rough edges.

1. INTRODUCTION
Design patterns are a way of implementing a common

solution to a common problem in object-oriented software.

Many informal catalogues exist, explaining how they are used

and implemented. However, there is not any standardized way

for defining about the consistence of design pattern for all the

informal descriptions of design patterns

[1][2][3], java is consider as among the best suitable Object-

Oriented Programming language which provides specially

Multiple inheritance through the Interface, interface in java

along with inheritance, multiple inheritance used commonly

and mostly for design pattern and structure or software

prototype, Interface is basically a container which contains

only abstract methods which are the solution for recurring

software design problems[6][7],there are many design

patterns has been discovered and published, there are some

design patterns can be directly supported by some

programming languages, among them multiple inheritance

gives a facilities to inherit data and code of multiple class

(more than one class) in a derived class, multiple inheritance

some time consider found matter of controversy and

indiscipline because of its nature, there are some problem or

dark side of this interface are like –problem of name

clashes[16][17], complexity so some programming language

like Java avoids multiple inheritance for becoming software

architecture cleaner[2][6] and more simple, but sometimes

there are many software development stages in which a

software developer really need multiple inheritance, for this

stages java gives Interface which used for providing the

facility of Multiple inheritance and also provide a structural

design for software development , but still there is some

issues arrives in the interface, which will be discuses in this

research paper, this will not wrong if said the loose poll of

interface in java.

2. BACKGROUND
There are several other projects which has been focused on

the design pattern they have created them from an empty

class, improving existing design code and applying them into

a design pattern. Meijers’ Fragment Tool [5] which provides a

mechanism from which a design pattern can be represented

and also they could modified through a development tool. The

main focus was to facilitate the use of design patterns for

design and implementation, in-spite of focusing on the lower-

level classes, methods and fields, in Object Oriented

programming language like Java, Patterns also can be

represented as fragments (inheritance or templates), which are

associated with classes. Now developers has to decide that

which fragment has to be chosen for better result keeping with

the roles of other classes/methods/fields, pattern should also

be decided on the basis of re-patterning, because it is possible

that the pattern require change at any time.[4][5]

Budinsky et al. in (1996) developed a computer based

tool[11], which automates the implementation of design

patterns. For this tool a user can take specific input for the

particular application for any given pattern from which the

tool generates the entire pattern prescribed code automatically

[11].

Krueger [12] introduces the following taxonomy to classify

some different-different reusable approaches like software-

component, architectures, schemas, application generators,

and transformation systems, schemas of any software and

architectures area for a reusable Software are the part of an

design pattern in Object Oriented approaches. Reusing of a

abstract schemas (abstraction), such abstractions are

represented formally so they can be access automatically,the

Paris system [13] is representative of schema technology.

Schemas are lower than the Design patterns, In addition,

design patterns cannot be instantiated directly because design

patterns are not formal descriptions [12][13]

3. INTERFACE FOR DESIGN

PATTERN
 Interface in java used under the design pattern (Inheritance)

for object oriented software development in java, multiple

inheritance is only possible in java through Interface in which

multiple group (Super class-which can creates by Interface)

can be implemented together in the single class(Derived class)

like fig 1,

Fig-1.Multiple Inheritances as Design pattern (Only

Possible through Interface in Java)

Super

Class 1

Super

Class 2

Derived class 3

Super class

“N”

International Journal of Computer Applications (0975 – 8887)

Volume 135 – No.13, February 2016

25

Interface is the collection of abstract methods only which can

be creates by the interface keyword[13[14],

Fig- 2.declaring an interface

abstract methods are those methods which have only

declaration (method prototype) include methods signature like

behavior , Access modifier, return type and identifier only

they haven’t their definition in the interface[15],

Fig 3. Types and signature of the methodsupported by

interface

Methods cannot be define inside the interface, this will just a

designing structure for the software which is going to be

developed, before performing coding need to create a

prototype of that ,In Java method prototype cannot be created

directly[13][9], because in Java method also have an parent

body i.e classes and interfaces, in the class Java does not

allow method declaration, and for software design need of

method prototype then Java provide the concept of Interfaces,

but java says that Interface can only be used for containing

method prototype only it can’t be define in the interface,

If programmers define the methods in the interface as show in

the fig number 2.

interface CantDefine

{

void msg()

{

System.out.println("can not define the interface");

}

void msg2();

}

class Use implements CantDefine

{

public void msg2()

{

System.out.println("this is ok");

}}

class call

{

public static voidmain(String anand[])

{

Use u1=new Use();

u1.msg();

u1.msg1();

}}

Fig4.defining the interface

During the compilation of this code , the compiler generates

errors –that Interface does not allow definition of the methods.

Fig 5.compilation the program of fig-04

The definition of the abstract methods can be give into the

derived class which inherit the interface by implementing (by

implements keyword) and then programmers can define the

methods of interfaces, like below.

Fig-6. Interface which is going to be define in class

There is a need of a class in which programmer can

implements the interface.

interface MyInterface

{

void message(); //abstract metods.

}

public void Area(); // declaration of method

such types of methods can contain by

interface.

interface Rectangle

{

public void Area();

}

interface MyInterface

{

void message();

}

International Journal of Computer Applications (0975 – 8887)

Volume 135 – No.13, February 2016

26

Fig 7. Creating and implementing the interface structure

of implementation of an interface into a class

There is a class UseRect which inherits the interface by

implements keyword, now is ready for defining the methods

of the Interface as fig-08,

interface MyInterface

{

void message();

}

class UseInterface implements MyInterface

{

public void message()

{

System.out.println("definition of the method of a interface");

}

}

class call

{

public static voidmain(String anand[])

{

UseInterface ui=new UseInterface();

ui.message();

} }

Fig 8. implementation of an interface into a class

The class which defines the methods of interfaces are said to

the derived class because first it inherit the interface then said

to be derived class, now it have the rights to give the

definition of the abstract methods of the interface

This is the way by which programmers design the structure

for software in java.

4. ROUGH EDGES OF INTERFACE
Interface is really works very well for providing software

designing structure, but also have a major Rough side of this

wonderful concept of Java, java says that only method

declaration is allowed under the interface no definition is

allowed , but in practical this is possible that definition can be

given under the interface let see how this is possible firstly

there is need to understand the concept of parent and child

class in java.

5. PARENTS AND CHILD CLASS

APPROACH
Java provide the Parents and child class approach, in this any

class can also be define under any other class , so the upper

class which consist another class known as Parent class and

the class [7][6] which reside under the parent class known as

child class, for more understandable let’s see an example .

Fig 9.Syntax of parent and child class

Fig 10.parent class example

Such arrangement of classes known as parent child class

concept, this arrangement will compiled successfully (if no

syntax error) by this command on dos.

Compiled by :\> javac nameofprog.java and then run by

 :\> java Parents$child command.

This is possible because java creates separate-separate bytes

code(class file) for each and every classes, the name of bytes

code (class file) of parent class of above example will be

Parent.class and name of child class will be as

Parent$child.class as shown in below figure-11, [15][16]

class Parents

{

 void msg1()

{

System.out.println("I am parent");

}

class child

 {

 void msg1()

 {

System.out.println("I am child");

 }

} //Child closed

} //Parent closed

class Parents

{

//Definition of parent class

class child

{

//Definition of child class

}//child closed

}//parent closed

class UseRect implements MyInterface

{

public void message()

{

//Definition of the method of interface.

}

}

International Journal of Computer Applications (0975 – 8887)

Volume 135 – No.13, February 2016

27

Fig 11. View of parent and child class in windows

In the case of interface , when programmers compile the

interface , java’s compiler also creates Byte code of interface

in the form of class , and in above code this is clear that a

class can contain another class . so if programmers assume

interface as a class then programmers can apply the parent and

child class concept , here we have to assume interface as

parent class then programmers can write a child class into

interface(parent class). [5][6]

6. RESULTS

Fig 12. Structure of merging child class in to interface.

If programmers merge the concept of Parent child class into

interface, without worrying that interface does-not allow the

definition, like following.

Fig 13. Defining the interface by parent and child concept.

Here given the definition into the interface, which are strictly

denied by JAVA, but when programmers gave the definition

by creating child class then result is changed, when compile

by the java compiler as in figure -14, then

Fig 14.Compilation of fig-13’s code.

there is no error occurs it means this code is being successful

compile and converted into Byte codes, one Byte code for

parent class (interface) and another byte code for child class,

which breaks the concept that interface can’t be define , now

programmers can say that interface can be define, this can be

run simply as parent child concept has ran as in figure 8.

Fig 15.excecution of figure -13.

7. CONCLUSIONS
In java when programmers compile the interface, java

Complier creates a class file (Byte Code) of interface means

java Compiler treats interface as Class

and java already provided the concept of Inner class, so when

programmers write a class into the interface then interface

Interface BreakingInterface

{

Class Breaks

{

Public static void main(String anand[])

{

System.out.println("Interface can also be define”);

}}}

interface Identifier //parent class

{

class identifier //child class

{

Methods()

{

//Definition of methods

}

 } //Child closed

 } //parent closed

NO Error

Output comes… 

International Journal of Computer Applications (0975 – 8887)

Volume 135 – No.13, February 2016

28

behaves like an parents class which is same as a Parent-Child

class concept, and compiler treated interface as an class, thus

way compiler doesn’t provide any error and creates the byte

code which can be run by parent-child method using the

parent&child command on the promt.

Dir:/> java Parent&Child

D:\> java BreakingInterface&Breaks

So the with this programmers can prove and say that

programmers can break the limitation of one concept of Java

by another concept of Java.

“If java prevent interface to convert into class file after

compilation then this rough edge can be removed from

interface , java has to convert interface into byte code but not

in the form of class otherwise this will remain same “.

8. REFERENCES
[1] Wesley, 1995. ISBN 0-201-63361-2.Summary of

Changes to DoD-STD-2167A and DoD-STD-7935A

resulting in MIL-STD-SDD, Executive Summary, p. 1,

December 1992.

[2] O. Agesen, S. Freund, and J. Mitchell, “Adding Type

Parameterization to the Java Language”, OOPSLA 1997,

49-65.

[3] G. Bracha and W. Cook, “Mixin-Based Inheritance”,

ECOOP/OOPSLA 90, 303-311.

[4] [BMRSS96] Buschmann F., Meunier R., Rohnert H.,

Sommerlad P., Stal M.: Pattern-oriented Software

Architecture: A System of Patterns. Wiley 1996.

[CaW98] Campione M., Walrath K.: The Java Tutorial,

2nd edition, Addison-Wesley, 1998.

[5] [GHJV95] Gamma E., Helm R., Johnson R., Vlissides J.:

Design Patterns – Elements of Reusable Object-Oriented

Software. Addison-Wesley 1995.

[6] BUDINSKY, F., M. FINNIE, J. VLISSIDES and P.

YU(1996) Automatic code generation from design

patterns, IBM Systems Journal, 35 (2), 151–171.

[7] Charles W. Krueger. Software reuse. ACM Computing

Surveys, 24(2), June 1992.

[8] S. Katz, C.A. Richter, and K.-S. The. Paris: A system for

reusing partially interpreted schemas. In Proc. of the

Ninth International Conference on Software Engineering.

1987

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design

Patterns: Elements of reusable object-orientedsoftware.

Professional Computing Series. Addison

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design

Patterns: Elements of reusable object-orientedsoftware.

Professional Computing Series. AddisonWesley, 1995.

ISBN 0-201-63361-2.

[11] Proc. of the Ninth International Conference on Software

Engineering, 1987.

[12] Twin – A Design Pattern for Modeling Multiple

Inheritance Hanspeter Mössenböck

[13] KRAMER, C. and L. PRECHELT (1996), Design

Recovery by Automated search for structural design

patterns in object oriented software, Proceedings of the

Third Working Conference on Reverse Engineering,

New York: IEEE, 208–215.

[14] [jacob99a] I Jacobson, Booch G. and Rumbaugh J., “The

Unified Software Development Process.” Addison-

Wesley, Reading, MA, 1999.

[15] Kung, D. C., H. Bhambhani, R. Shah, and G. Pancholi.

2003, An expert system for suggesting design patterns: a

methodology and a prototype. In Software Engineering

With Computational Intelligence, ed. T. M.

Khoshgoftaar. Kluwer Int.

[16] J. Coplien. Pattern Languages of Program Design

1.Pattern Languages of Program Design. Addison

Wesley, June 1995

[17] M. Meijers. Tool support for object-oriented design

patterns. Master’s thesis, Utrecht University, 1996 INF-

SCR-96-28.

[18] M. Fowler and K. Scott. UML Distilled.Addison-Wesley

Professional, September 2003.

IJCATM : www.ijcaonline.org

