A Python based Regression Approach on Reliable Journal Parameters to Assess Few Scientific Impact Measures

P. VaraPrasada Rao
Associate Professor,
Department of CSE,
Gokaraju Rangaraju Institute of Engg&Tech

A. Govardhan, PhD
Director, SIT
JNTUH, Hyderabad

ABSTRACT

The growing use of bibliometrics among researchers has showcased the emergence of various evaluators of scientific research at the author front as well as journal publishers. Several indices has been put forward since the importance of scientific evaluators has gained prominence. Among any such indices, h-index, g-index etc., has been widely used in literature. The regression analysis presented here focus on the citation parameters such as total docs, citable docs, references per doc etc., reported in SCImago database to evaluate the dependence of these parameters on various indices such as h-index, a-index, m-index, q2 index, r-index, a-r index and e-index respectively. The regression analysis was performed to delineate the dependence of various citation features on index values. From the analysis, it is understood that in all cases except a-index, an increase in SJR value is suggested which means that SJR contributes positively to enhance index factor of journals.

Keywords

SCImago, bibliometrics, indexvalue, python

1. INTRODUCTION

Bibliometric indicators are intended to quantify the significance of individual journals and the scholarly publication in which research is published [1]. The increasing importance of the scientific impact of journals as independent measures of quality or impact of any scientific publication has triggered the evolution of many bibliometric indices [2] [3]. The impact of a scientific publication is measured by the number of times the article gets cited in other journals [4]. Bibliometric indicators quantify the pertinent citation and use of bibliographic information and are being used extensively in the assessment of research performance. Publication counts serve as an indicator of the amount of new scientific knowledge produced by researchers. The impact of this new knowledge can be measured by the number of times publications have been cited by other scientists in subsequent work. Evaluation of quality and quantity of publications can be done using a set of statistical and mathematical indices called bibliometric indicators [4]. Indicators such as Quantitative indicators measure the productivity of the researcher and performance indicators measure the quality of the journal or researcher.

The validity of bibliometric indicators is much greater at research groups, university departments and research institutes and should be applied with extreme caution when measuring or comparing the performance of individual scientists. Bibliometric analysis of scientific activity is based on the assumption that carrying out research and communicating the results go hand in hand. Scientific progress is attained by researchers getting together to study specific research topics. Publications are regarded as the definitive statements of the results of research projects. This can be quantified and analysed to determine the size and nature of the research carried out. The need for a relatively quick and easy alternative to peer review for evaluating research performance led to the discovery of bibliometrics. [5].

The knowledge of research indices started when Hirsh proposed the h-index, designed to measure the impact of research publications to estimate the author influence [6]. H-index has been regarded as the most reliable, robust and easily computed [7][8][9]. H-index assesses both the quantity and importance or relevance of publications [10]. H-index has some limitations, and hence to overcome and provide enhancements to H-index, Egghe proposed the g-index [11]. Based on properties of h and g indices, Kosmulski [12] proposed the H(2)-index which concentrates on highly cited research publications. Other indices were proposed which concentrated on the publications that were located at (H-core) in its calculations [13] such as A-index proposed by Jin [14] where, the average number of citations for those publications in the H-core is evaluated. As a variation of A-index, Bornmann et al proposed m-index where, instead of arithmetic average, median is employed as the measure of central tendency [14]. m-index calculated by dividing the h index by the number of years of that journal’s publication [15]. In order to increase the index value of a journal or researcher, several policies can be adopted to improve citations, such as publishing more review articles, as well as inviting papers and request authors to cite work published. Therefore, here we present a methodology to assess the bibliometric index on a journal and important parameters that might influence a high index value.

2. MATERIALS AND METHODS

2.1 SCImago

[16]Database includes journals from the information contained in Scopus database [17]. SCImago database searched for ‘computer science journals’ and are listed. The journal parameters such Sci Journal Ranking (SJR), h-index, Total Docs, Total References, Total cites, citable docs, cites/doc and references/doc etc., are calculated by SCImago and are used.

2.2 Regression

Regression analysis is the method of correlating parameters with dependent variable. A python program was written to perform linear regression analysis. Bibliometrics indices were regarded as dependent variable
and all other citation parameters are considered as independent variables. To obtain reliable and robust regression, it is desirable to consider a large dataset that covers reasonable diversity.

2.3 Dataset
SCImago site was searched for all categories of computer science journals and from the search result, nearly 142 journal data (Table 1) was selected as independent variables and various indices are presented as dependent variables. The relationship between dependent variable (bibliometric indices) and independent variables (citation parameters) was established by linear regression analysis. The generated equation was judged based on the parameters like correlation coefficient (r), r², and adjusted r².

2.4 Bibliometric indices
In recent years, several research and publications related indices were proposed to assess the quality of the academic research publications. Each one of those indices has its own strengths and weaknesses. Here, we considered indices such as h-index, a-index, m-index, q2 index, r-index, a-r index and e-index respectively. The regression analysis was performed to delineate the dependence of various citation features on index values.

Table 1: Citation parameters from SCImago and various bibliometric indices selected in analysis.

<table>
<thead>
<tr>
<th>Title</th>
<th>TD3</th>
<th>TR3</th>
<th>TC3</th>
<th>CD3</th>
<th>CD2</th>
<th>RD</th>
<th>SJR</th>
<th>H index</th>
<th>A inde</th>
<th>m index</th>
<th>q2 inde</th>
<th>r inde</th>
<th>a-r inde</th>
<th>e index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Archives of Computational Methods in Engineering</td>
<td>42</td>
<td>1383</td>
<td>312</td>
<td>40</td>
<td>4.82</td>
<td>98.7</td>
<td>9</td>
<td>6.28</td>
<td>32</td>
<td>9.75</td>
<td>10.6</td>
<td>18.4</td>
<td>8</td>
<td>99.9</td>
</tr>
<tr>
<td>MIS Quarterly: Management Information</td>
<td>151</td>
<td>5571</td>
<td>1771</td>
<td>149</td>
<td>9.88</td>
<td>81.9</td>
<td>3</td>
<td>6.25</td>
<td>132</td>
<td>13.4</td>
<td>44</td>
<td>76.2</td>
<td>1</td>
<td>483.5</td>
</tr>
<tr>
<td>Swarm and Evolutionary Computation</td>
<td>46</td>
<td>1696</td>
<td>557</td>
<td>45</td>
<td>12.3</td>
<td>8</td>
<td>41.3</td>
<td>7</td>
<td>5.63</td>
<td>13</td>
<td>42.8</td>
<td>4.33</td>
<td>7.51</td>
<td>85.0</td>
</tr>
<tr>
<td>Proceedings of the Annual ACM Symposium on Theory of Computing</td>
<td>260</td>
<td>3195</td>
<td>737</td>
<td>253</td>
<td>2.57</td>
<td>31.6</td>
<td>9</td>
<td>4.47</td>
<td>40</td>
<td>14.8</td>
<td>13.3</td>
<td>23.0</td>
<td>9</td>
<td>171.7</td>
</tr>
<tr>
<td>IEEE Wireless Communications</td>
<td>238</td>
<td>1368</td>
<td>1693</td>
<td>211</td>
<td>7.16</td>
<td>12.1</td>
<td>1</td>
<td>3.83</td>
<td>98</td>
<td>17.2</td>
<td>32.6</td>
<td>56.5</td>
<td>8</td>
<td>407.33</td>
</tr>
<tr>
<td>IEEE Transactions on Information Theory</td>
<td>1565</td>
<td>1700</td>
<td>6</td>
<td>6546</td>
<td>1544</td>
<td>3.77</td>
<td>30.3</td>
<td>1</td>
<td>3.39</td>
<td>192</td>
<td>34.0</td>
<td>64</td>
<td>110.85</td>
<td></td>
</tr>
<tr>
<td>Journal of the ACM</td>
<td>92</td>
<td>1967</td>
<td>396</td>
<td>81</td>
<td>5.18</td>
<td>43.7</td>
<td>1</td>
<td>3.35</td>
<td>88</td>
<td>4.5</td>
<td>29.3</td>
<td>50.8</td>
<td>1</td>
<td>186.18</td>
</tr>
<tr>
<td>IEEE Journal on Selected Areas in Communications</td>
<td>534</td>
<td>8569</td>
<td>3107</td>
<td>502</td>
<td>6</td>
<td>29.1</td>
<td>5</td>
<td>3.35</td>
<td>165</td>
<td>18.8</td>
<td>55</td>
<td>95.2</td>
<td>6</td>
<td>716</td>
</tr>
<tr>
<td>IEEE Communications Magazine</td>
<td>829</td>
<td>2874</td>
<td>4817</td>
<td>643</td>
<td>7.3</td>
<td>9.94</td>
<td>6</td>
<td>3.19</td>
<td>144</td>
<td>33.4</td>
<td>48</td>
<td>83.1</td>
<td>4</td>
<td>832.85</td>
</tr>
<tr>
<td>Journal of Strategic Information Systems</td>
<td>85</td>
<td>1715</td>
<td>334</td>
<td>72</td>
<td>4.39</td>
<td>57.1</td>
<td>7</td>
<td>2.90</td>
<td>50</td>
<td>6.68</td>
<td>16.6</td>
<td>28.8</td>
<td>7</td>
<td>129.23</td>
</tr>
<tr>
<td>IEEE Transactions on Wireless Communications</td>
<td>1354</td>
<td>1643</td>
<td>7</td>
<td>6025</td>
<td>1324</td>
<td>4.09</td>
<td>27.5</td>
<td>2</td>
<td>2.72</td>
<td>118</td>
<td>51.0</td>
<td>39.3</td>
<td>68.1</td>
<td>843.1</td>
</tr>
<tr>
<td>Foundations and Trends in Information</td>
<td>10</td>
<td>574</td>
<td>93</td>
<td>10</td>
<td>5.83</td>
<td>191.33</td>
<td>33</td>
<td>2.71</td>
<td>15</td>
<td>6.2</td>
<td>5</td>
<td>8.66</td>
<td>37.3</td>
<td>21.5</td>
</tr>
<tr>
<td>IEEE Transactions on Industrial Informatics</td>
<td>243</td>
<td>8691</td>
<td>2221</td>
<td>227</td>
<td>11.1</td>
<td>35.9</td>
<td>1</td>
<td>2.66</td>
<td>39</td>
<td>56.9</td>
<td>13</td>
<td>22.5</td>
<td>2</td>
<td>294.31</td>
</tr>
<tr>
<td>Information Sciences</td>
<td>1147</td>
<td>2573</td>
<td>3</td>
<td>6125</td>
<td>1125</td>
<td>5.34</td>
<td>39.7</td>
<td>7</td>
<td>2.60</td>
<td>91</td>
<td>67.3</td>
<td>30.3</td>
<td>52.5</td>
<td>746.58</td>
</tr>
<tr>
<td>Information and Organization</td>
<td>37</td>
<td>1267</td>
<td>138</td>
<td>36</td>
<td>4.23</td>
<td>70.3</td>
<td>9</td>
<td>2.53</td>
<td>34</td>
<td>4.06</td>
<td>11.3</td>
<td>19.6</td>
<td>3</td>
<td>68.5</td>
</tr>
<tr>
<td>Web Semantics</td>
<td>132</td>
<td>902</td>
<td>437</td>
<td>104</td>
<td>4.61</td>
<td>32.2</td>
<td>1</td>
<td>2.13</td>
<td>49</td>
<td>8.92</td>
<td>16.3</td>
<td>28.2</td>
<td>9</td>
<td>146.33</td>
</tr>
</tbody>
</table>

36
<table>
<thead>
<tr>
<th>Journal/Conference/Magazine</th>
<th>No.12, February 2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE/ACM Transactions on Networking</td>
<td>446 4733 1691 415</td>
</tr>
<tr>
<td>Enterprise Information Systems</td>
<td>69 2296 351 65 6</td>
</tr>
<tr>
<td>Journal of Management Information</td>
<td>138 2513 445 122 2.94</td>
</tr>
<tr>
<td>Journal of Computer-Mediated Information</td>
<td>86 1416 262 81 3.12</td>
</tr>
<tr>
<td>Communications of the ACM</td>
<td>1017 2013 2955 650 3.57</td>
</tr>
<tr>
<td>Decision Support Systems</td>
<td>481 9942 1590 469 3.14</td>
</tr>
<tr>
<td>Information Systems Journal</td>
<td>82 1817 229 63 2.43</td>
</tr>
<tr>
<td>IEEE Network</td>
<td>152 806 775 119 6.07</td>
</tr>
<tr>
<td>Journal of the American Society for Information</td>
<td>602 1105 5 1867 534</td>
</tr>
<tr>
<td>Journal of Information Technology</td>
<td>110 1760 264 67 2.49</td>
</tr>
<tr>
<td>Journal of the Association of Information</td>
<td>103 2386 331 103 2.46</td>
</tr>
<tr>
<td>Knowledge and Information Systems</td>
<td>294 8431 902 279 3.02</td>
</tr>
<tr>
<td>ACM Transactions on the Web</td>
<td>56 1551 255 54 4.68</td>
</tr>
<tr>
<td>Information Systems</td>
<td>180 2950 596 158 3.4</td>
</tr>
<tr>
<td>European Journal of Information</td>
<td>150 3347 428 143 2.76</td>
</tr>
<tr>
<td>ACM Transactions on Programming Languages and Systems</td>
<td>59 799 148 54 2.86</td>
</tr>
<tr>
<td>IEEE Communications Letters</td>
<td>1378 6866 3030 1370 2.18</td>
</tr>
<tr>
<td>IEEE Transactions on Services Computing</td>
<td>104 1577 491 90 4.36</td>
</tr>
<tr>
<td>Journal of Information Systems</td>
<td>46 1434 121 43 2.36</td>
</tr>
<tr>
<td>ACM Transactions on Management Information</td>
<td>49 1352 109 48 2.31</td>
</tr>
<tr>
<td>Information and Software Technology</td>
<td>288 7370 915 267 3.07</td>
</tr>
<tr>
<td>Software and Systems Modelling</td>
<td>128 5182 234 83 2.2</td>
</tr>
<tr>
<td>IEEE Internet Computing</td>
<td>298 759 809 278 2.62</td>
</tr>
<tr>
<td>Journal of Computational Science</td>
<td>135 1361 320 123 2.6</td>
</tr>
</tbody>
</table>

Note: The numbers in the table represent specific values that are not easily translatable into plain text without context.
<table>
<thead>
<tr>
<th>Journal of Computer Security</th>
<th>98 1220 183 84 2 42.0 7 0.97 1 0.84 3 11.6 7 20.2 1 76.2 2 44.0 1 11.4 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computers and Security</td>
<td>210 3667 505 182 2.41 37.8 0.83 8 51 9.9 17 29.4 4 160. 48 92.6 6 21.3 1</td>
</tr>
<tr>
<td>Information Systems Research</td>
<td>184 4437 853 174 3.99 70.4 3 3.63 2 99 8.62 33 57.1 6 290. 6 167. 78 27.4 6</td>
</tr>
<tr>
<td>Journal of Operations Management</td>
<td>141 2808 916 130 5.32 75.8 9 5.87 2 108 8.48 36 62.3 5 314. 53 181. 59 28.4 3</td>
</tr>
<tr>
<td>IEEE Transactions on Fuzzy Systems</td>
<td>285 4301 2487 281 8.42 45.7 6 3.59 119 20.9 39.6 7 68.7 544. 02 314. 09 48.6 6</td>
</tr>
<tr>
<td>Mathematical Programming Computing</td>
<td>36 495 157 36 4.12 38.0 8 3.33 5 11 14.2 7 3.67 3 41.5 6 23.9 9 12.7 8</td>
</tr>
<tr>
<td>International Journal of Robotics Research</td>
<td>307 4035 1586 286 5.46 44.3 4 3.33 89 17.8 2 29.6 7 51.3 8 375. 7 216. 91 38.6 9</td>
</tr>
<tr>
<td>IEEE Transactions on Automatic Control</td>
<td>1073 9995 5450 1056 4.58 27.4 6 2.99 175 31.1 4 58.3 3 101. 04 976. 6 563. 84 72.3 6</td>
</tr>
<tr>
<td>Computers and Operations Research</td>
<td>721 9080 2518 698 3.03 28.7 3 2.97 84 29.9 8 28 48.5 459. 9 265. 53 49.3 4</td>
</tr>
<tr>
<td>IEEE Transactions on Signal Processing</td>
<td>1709 1670 1 8058 1690 4.45 34.1 5 2.81 162 49.7 4 54 93.5 3 1142. 54 659. 65 88.8 6</td>
</tr>
<tr>
<td>IEEE Journal on Selected Topics in Signal Processing</td>
<td>312 2508 1771 288 5.32 30.9 6 2.70 45 39.3 6 15 25.9 8 282. 3 162. 99 41.5 5</td>
</tr>
<tr>
<td>IEEE Transactions on Robotics</td>
<td>330 4613 1845 329 5.03 37.5 2.62 67 23.9 6 25.6 7 44.4 6 376. 92 217. 61 42.0 5</td>
</tr>
<tr>
<td>IEEE Transactions on Image Processing</td>
<td>973 1587 5752 965 5.01 38.0 7 1.98 169 34.0 4 56.3 7 97.5 7 985. 95 569. 24 74.7 2</td>
</tr>
<tr>
<td>Medical Image Analysis</td>
<td>251 4984 1381 243 5.23 50.3 4 1.97 76 18.1 7 25.3 3 43.8 8 323. 97 187. 04 36.7 2</td>
</tr>
<tr>
<td>Computers and Structures</td>
<td>497 7475 1481 483 2.84 34.6 1 1.91 75 19.7 5 25 43.3 333. 28 192. 42 37.5 8</td>
</tr>
<tr>
<td>ACM Transactions on Database Systems</td>
<td>88 1192 227 84 2.52 42.5 7 1.83 59 3.85 19.6 7 34.0 6 115. 73 66.8 6 12.9 6</td>
</tr>
<tr>
<td>IEEE Signal Processing Magazine</td>
<td>334 3058 1507 280 5.26 25.4 8 1.83 106 14.2 2 35.3 3 61.2 399. 8 230. 75 37.4 3</td>
</tr>
<tr>
<td>Journal of Field Robotics</td>
<td>146 1781 555 136 3.88 37.8 9 1.76 52 10.6 7 17.3 3 30.0 2 169. 88 98.9 8 22.4 3</td>
</tr>
<tr>
<td>IEEE Transactions on Knowledge and Data Engineering</td>
<td>423 8304 1858 408 3.84 38.6 2 1.76 103 18.0 4 34.3 3 59.4 7 437. 46 252. 57 41.8 9</td>
</tr>
<tr>
<td>Area</td>
<td>Volume</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>Mechanical Systems and Signal Processing</td>
<td>640</td>
</tr>
<tr>
<td>IEEE Transactions on Software Engineering</td>
<td>194</td>
</tr>
<tr>
<td>Pattern Recognition</td>
<td>964</td>
</tr>
<tr>
<td>Machine Learning</td>
<td>174</td>
</tr>
<tr>
<td>Journal of Computer and System Sciences</td>
<td>277</td>
</tr>
<tr>
<td>Fuzzy Sets and Systems</td>
<td>566</td>
</tr>
<tr>
<td>Data Mining and Knowledge Discovery</td>
<td>124</td>
</tr>
<tr>
<td>ACM Transactions on Information and System Security</td>
<td>72</td>
</tr>
<tr>
<td>Computational Statistics and Data Analysis</td>
<td>938</td>
</tr>
<tr>
<td>Networks</td>
<td>187</td>
</tr>
<tr>
<td>Mathematics of Operations Research</td>
<td>126</td>
</tr>
<tr>
<td>IEEE Transactions on Neural Networks and Learning Systems</td>
<td>179</td>
</tr>
<tr>
<td>IEEE Robotics and Automation Magazine</td>
<td>237</td>
</tr>
<tr>
<td>Information and Computation</td>
<td>230</td>
</tr>
<tr>
<td>Topics in Cognitive Science</td>
<td>176</td>
</tr>
<tr>
<td>ACM Transactions on Knowledge Discovery from Data</td>
<td>63</td>
</tr>
<tr>
<td>Robotics and Computer-Integrated Manufacturing</td>
<td>268</td>
</tr>
<tr>
<td>Signal Processing</td>
<td>899</td>
</tr>
<tr>
<td>Computational Geosciences</td>
<td>175</td>
</tr>
<tr>
<td>IEEE Robotics and Automation Magazine</td>
<td>237</td>
</tr>
<tr>
<td>Computational Materials Science</td>
<td>1521</td>
</tr>
<tr>
<td>Nano Communication Networks</td>
<td>84</td>
</tr>
</tbody>
</table>

Notes:
- **International Journal of Computer Applications (0975 – 8887)**
- **Volume 136 – No.12, February 2016**
- **Example Data:**
 - **Volume:** 640
 - **Issue:** 9342
 - **Pages:** 2363
 - **Example Numbers:**
 - **Volume:** 72
 - **Issue:** 730
 - **Pages:** 233
 - **Example Numbers:**
 - **Volume:** 179
 - **Issue:** 6852
 - **Pages:** 917
 - **Example Numbers:**
 - **Volume:** 176
 - **Issue:** 2553
 - **Pages:** 331
 - **Example Numbers:**
 - **Volume:** 63
 - **Issue:** 844
 - **Pages:** 188
 - **Example Numbers:**
 - **Volume:** 237
 - **Issue:** 980
 - **Pages:** 559
 - **Example Numbers:**
 - **Volume:** 268
 - **Issue:** 3218
 - **Pages:** 788
 - **Example Numbers:**
 - **Volume:** 899
 - **Issue:** 1102
 - **Pages:** 6
 - **Example Numbers:**
 - **Volume:** 175
 - **Issue:** 2924
 - **Pages:** 356
 - **Example Numbers:**
 - **Volume:** 237
 - **Issue:** 980
 - **Pages:** 559
 - **Example Numbers:**
 - **Volume:** 1521
 - **Issue:** 1944
 - **Pages:** 8
 - **Example Numbers:**
 - **Volume:** 84
 - **Issue:** 610
 - **Pages:** 232
 - **Example Numbers:**
<table>
<thead>
<tr>
<th>Title</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACM Transactions on Knowledge Discovery from Data</td>
<td>63</td>
<td>1</td>
<td>844-888</td>
</tr>
<tr>
<td>IEEE Signal Processing Letters</td>
<td>585</td>
<td>1</td>
<td>1573-1577</td>
</tr>
<tr>
<td>Pattern Recognition Letters</td>
<td>832</td>
<td>1</td>
<td>2273-2276</td>
</tr>
<tr>
<td>Journal of Discrete Algorithms</td>
<td>177</td>
<td>1</td>
<td>1034-1041</td>
</tr>
<tr>
<td>Journal of Information Hiding and Multimedia</td>
<td>88</td>
<td>1</td>
<td>539-546</td>
</tr>
<tr>
<td>Robotics and Autonomous Systems</td>
<td>373</td>
<td>1</td>
<td>5754-5760</td>
</tr>
<tr>
<td>IEEE Software</td>
<td>341</td>
<td>1</td>
<td>629-635</td>
</tr>
<tr>
<td>International Journal of Sensor Networks</td>
<td>118</td>
<td>1</td>
<td>1254-1260</td>
</tr>
<tr>
<td>Foundations and Trends in Machine Learning</td>
<td>10</td>
<td>1</td>
<td>467-471</td>
</tr>
<tr>
<td>IEEE Transactions on Pattern Analysis and Machine</td>
<td>584</td>
<td>1</td>
<td>1032-1037</td>
</tr>
<tr>
<td>Computer Methods in Applied Mechanics and Engineering</td>
<td>764</td>
<td>1</td>
<td>1113-1117</td>
</tr>
<tr>
<td>ACM Computing Surveys</td>
<td>84</td>
<td>1</td>
<td>8460-8464</td>
</tr>
<tr>
<td>IEEE Transactions on Evolutionary Computation</td>
<td>159</td>
<td>1</td>
<td>2709-2713</td>
</tr>
<tr>
<td>SIAM Journal on Computing</td>
<td>227</td>
<td>1</td>
<td>3087-3091</td>
</tr>
<tr>
<td>Computers and Education</td>
<td>757</td>
<td>1</td>
<td>1448-1452</td>
</tr>
<tr>
<td>Mathematical Programming</td>
<td>285</td>
<td>1</td>
<td>5880-5884</td>
</tr>
<tr>
<td>ACM Transactions on Mathematical Software</td>
<td>83</td>
<td>1</td>
<td>976-981</td>
</tr>
<tr>
<td>IEEE Transactions on Mobile Computing</td>
<td>414</td>
<td>1</td>
<td>6393-6400</td>
</tr>
<tr>
<td>Computers and Geotechnics</td>
<td>329</td>
<td>1</td>
<td>4736-4740</td>
</tr>
<tr>
<td>Journal of Machine Learning Research</td>
<td>756</td>
<td>1</td>
<td>5817-5821</td>
</tr>
<tr>
<td>Foundations of Computational Mathematics</td>
<td>78</td>
<td>1</td>
<td>1286-1290</td>
</tr>
<tr>
<td>Artificial Intelligence</td>
<td>203</td>
<td>1</td>
<td>3603-3607</td>
</tr>
<tr>
<td>Computational Intelligence and Neuroscience</td>
<td>110</td>
<td>1</td>
<td>954-958</td>
</tr>
<tr>
<td>Journal of Computer Assisted Learning</td>
<td>138</td>
<td>2404</td>
<td>485</td>
</tr>
<tr>
<td>Proceedings of the Annual IEEE Conference on Computational Complexity</td>
<td>99</td>
<td>738</td>
<td>128</td>
</tr>
<tr>
<td>IEEE Computational Intelligence</td>
<td>117</td>
<td>769</td>
<td>313</td>
</tr>
<tr>
<td>INFORMS Journal on Computing</td>
<td>146</td>
<td>1682</td>
<td>240</td>
</tr>
<tr>
<td>Statistics and Computing</td>
<td>181</td>
<td>3681</td>
<td>325</td>
</tr>
<tr>
<td>IEEE Transactions on Affective Computing</td>
<td>76</td>
<td>2275</td>
<td>533</td>
</tr>
<tr>
<td>Journal of Scientific Computing</td>
<td>303</td>
<td>6087</td>
<td>613</td>
</tr>
<tr>
<td>International Journal of Machine Learning and Cybernetics</td>
<td>67</td>
<td>2330</td>
<td>330</td>
</tr>
<tr>
<td>IEEE/ASME Transactions on Mechatronics</td>
<td>356</td>
<td>5990</td>
<td>1738</td>
</tr>
<tr>
<td>Automated Software Engineering</td>
<td>50</td>
<td>1306</td>
<td>131</td>
</tr>
<tr>
<td>Computational Geometry: Theory and Applications</td>
<td>195</td>
<td>1233</td>
<td>180</td>
</tr>
<tr>
<td>Journal of Graph Algorithms and Applications</td>
<td>62</td>
<td>779</td>
<td>76</td>
</tr>
<tr>
<td>Advanced Engineering Informatics</td>
<td>194</td>
<td>2529</td>
<td>638</td>
</tr>
<tr>
<td>Artificial Intelligence and Law</td>
<td>44</td>
<td>799</td>
<td>65</td>
</tr>
<tr>
<td>Theory and Practice of Logic Programming</td>
<td>116</td>
<td>1301</td>
<td>222</td>
</tr>
<tr>
<td>Fuzzy Optimization and Decision Making</td>
<td>66</td>
<td>721</td>
<td>150</td>
</tr>
<tr>
<td>Computers and Mathematics with Applications</td>
<td>2108</td>
<td>1021</td>
<td>6</td>
</tr>
<tr>
<td>International Journal of Artificial Intelligence</td>
<td>24</td>
<td>640</td>
<td>62</td>
</tr>
<tr>
<td>Journal of Artificial Intelligence</td>
<td>160</td>
<td>3497</td>
<td>495</td>
</tr>
<tr>
<td>Mechanism and Machine Theory</td>
<td>433</td>
<td>3757</td>
<td>992</td>
</tr>
<tr>
<td>Empirical Software Engineering</td>
<td>90</td>
<td>4046</td>
<td>303</td>
</tr>
<tr>
<td>Algorithmica</td>
<td>393</td>
<td>5117</td>
<td>433</td>
</tr>
<tr>
<td>International Journal of Intelligent Systems</td>
<td>176</td>
<td>1918</td>
<td>463</td>
</tr>
<tr>
<td>IEEE Transactions on Parallel and Distributed</td>
<td>558</td>
<td>7007</td>
<td>1969</td>
</tr>
</tbody>
</table>
where,

TD3: Total Docs.; TC3: Total Cites; CD3: Citable Docs.;

3. RESULTS AND DISCUSSION

Regression analysis implemented to assess the improvement of several index values for all computer science journals and the objective is to identify the important citation parameters and how they behave in a dataset. This is based on the fact that a high index value attracts more number of papers to that particular journal. The outcome of the program is prediction of dependent variables and several validation parameters are analysed such as r², adjusted r², F-statistic etc. The obtained equations were given below.

\[
h\text{-index} = 0.0858 \times \text{TD3} - 0.0001 \times \text{TR3} + 0.0268 \times \text{TC3} - 0.1234 \times \text{CD3} - 0.5905 \times \text{CD2} - 0.1207 \times \text{RD} + 0.2372 \times \text{SJR} + 0.406617
\]

r² = 0.632, adjusted r² = 0.613,

F-statistic = 32.90 (Eq.1)

\[
a\text{-index} = -0.0034 \times \text{TD3} + 0.0009 \times \text{TR3} - 0.0026 \times \text{TC3} + 0.0324 \times \text{CD3} + 3.1280 \times \text{CD2} - 0.0581 \times \text{RD} - 0.5664 \times \text{SJR} - 0.4094
\]

r² = 0.718, adjusted r² = 0.703,

F-statistic = 48.78 (Eq.2)

\[
m\text{-index} = 0.0286 \times \text{TD3} - 0.0003 \times \text{TR3} + 0.0089 \times \text{TC3} - 0.0411 \times \text{CD3} - 0.1969 \times \text{CD2} - 0.0403 \times \text{RD} + 1.0916 \times \text{SJR} + 13.5543
\]

r² = 0.632, adjusted r² = 0.613,

F-statistic = 32.90 (Eq.3)

\[
q2\text{-index} = 0.0495 \times \text{TD3} - 0.0006 \times \text{TR3} + 0.0155 \times \text{TC3} - 0.0712 \times \text{CD3} - 0.3406 \times \text{CD2} - 0.0697 \times \text{RD} + 1.8895 \times \text{SJR} + 23.4749
\]

r² = 0.632, adjusted r² = 0.613,

F-statistic = 32.90 (Eq.4)

\[
r\text{-index} = 0.2652 \times \text{TD3} + 0.0007 \times \text{TR3} + 0.1640 \times \text{TC3} - 0.3636 \times \text{CD3} + 0.0598 \times \text{CD2} - 0.4406 \times \text{RD} + 8.7870 \times \text{SJR} + 84.0066
\]

r² = 0.936, adjusted r² = 0.932,

F-statistic = 278.3 (Eq.5)

\[
a+r\text{-index} = 0.1531 \times \text{TD3} + 0.0004 \times \text{TR3} + 0.0947 \times \text{TC3} - 0.2099 \times \text{CD3} + 0.0344 \times \text{CD2} - 0.2544 \times \text{RD} + 5.0732 \times \text{SJR} + 48.5020
\]

r² = 0.936, adjusted r² = 0.932,

F-statistic = 278.3 (Eq.6)

\[
e\text{-index} = 0.0272 \times \text{TD3} - 0.0007 \times \text{TR3} + 0.0067 \times \text{TC3} - 0.0167 \times \text{CD3} + 1.5634 \times \text{CD2} - 0.0656 \times \text{RD} + 0.1544 \times \text{SJR} + 10.6136
\]

r² = 0.962, adjusted r² = 0.960,

F-statistic = 478.3 (Eq.7)

Considering h-index as dependent variable, from the linear regression analysis it is observed that an increase in SJR, TD3 and TC3 with a decrease in remaining parameters is essential for a high h-index value. It is understood that in all cases except a-index, an increase in SJR value is suggested which means that SJR contributes positively to enhance index factor of journals. A similar observation was made with TD3, except a-index, this parameter showed a nominal increase in this value might favour better index values. From equation-2, it is evident that CD2 should be increased to more extent when compared to remaining parameters to produce high a-index. Moreover, decrease in RD in all cases suggest that RD has negative effect on all indices. Therefore a decrease in references per document would favour better index values. Overall data on TC3 suggested that this parameter is not of much importance. Finally it can be stated that all computer science journal selected in the study emphasized the role of citation parameters to increase index values. In all cases, a
negative value represents that parameter value should be reduced in order to gain increase in a particular value and a positive contribution to index value is ascertained for positive coefficient values.

4. CONCLUSION
In this paper, an attempt has been made to study the relationship between citation parameters such as Total Docs.; Total Cites; Citable Docs.; Cites / Doc.; Ref. / Doc.; SciJournal Rank etc., and bibliometric indices such as h-index, a-index, m-index, q2 index, r-index, a-r index and e-index respectively. A linear regression program written in python suggested that an increase in TD3 and SJR for all computer science journals would enhance index values except a-index. Therefore, considering the positivity and negative contribution of citation parameters on journals is deemed necessary to increase likelihood of paper submission to journals.

5. REFERENCES