Abstract

Real time Image processing (I.P.) systems, involving on board multiprocessor communication, use standard bus based communication. The load on the system to deliver the output towards real time standards call for high speeds, but for data intensive application such as IP algorithms require constant transfer of data between the logic cores. This would need either dedicated
connections or additional bus controllers. Networks-On-Chip (NoC) provide a structured way of
realizing interconnections on silicon, and obviate the limitations of a bus-based solution. This
paper deals with the design and implementation of a NoC router targeted for an Image
processing system consisting of different modules. All the cores have been designed targeting
real time frame rates. The design has been prototyped on a Virtex II FPGA. The timings are
given in comparison to a standard DMA controller.

Reference

- L. Benini and G. Micheli, “Networks on Chips: A New SoC Paradigm,” IEEE Computer
 35(1) 2002, pp. 70-78.
- T. Marescaux, A. Bartic, D. Verkest, S. Vernalde, R. Lauwereins, “Interconnection Networks
- Trimberger S. M, “Field – Programmable Gate Array Technology”, Kluwer Academic
- J. Walrand and P. Varaija. “High Performance Communication Networks”. Morgan
- K. Lahiri, A. Raghunathan, and S. Dey. “Efficient exploration of the soc communication
 architecture design space”. In Proc. Intl. Conf. on Computer-Aided Design, pages 424–430,
 2000.
- W. J. Dally and B. Towles. “Route packets, not wires”. In Proc. of the Design Automation
- A. Pinto, L. P. Carloni, and A. L. Sangiovanni Vincentelli. Constraint-Driven
 June 2002.
- W. Dally, “Virtual-Channel Flow Control” IEEE Transaction on Parallel and Distributive

Index Terms

Computer Science Information
Technology
Key words

NoC

Virtex II

DMA

Router