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ABSTRACT 

In this paper, the solution of the matrix Riccati differential 

equation(MRDE) for nonlinear singular system is obtained using 

neural networks. The goal is to provide optimal control with 

reduced calculus effort by comparing the solutions of the MRDE 

obtained from well known traditional Runge Kutta(RK)method 

and nontraditional neural network method. Accuracy of the 

neural solution to the problem is qualitatively better. The 

advantage of the proposed approach is that, once the network is 

trained, it allows instantaneous evaluation of solution at any 

desired number of points spending negligible computing time 

and memory. The computation time of the proposed method is 

shorter than the traditional RK method. An illustrative numerical 

example is presented for the proposed method. 
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1. INTRODUCTION 
Neural networks or simply neural nets are computing systems, 

which can be trained to learn a complex relationship between 

two or many variables or data sets. Having the structures similar 

to their biological counterparts, neural networks are 

representational and computational models processing 

information in a parallel distributed fashion composed of 

interconnecting simple processing nodes [36]. Neural net 

techniques have been successfully applied in various fields such 

as function approximation, signal processing and adaptive (or) 

learning control for nonlinear systems. Using neural networks, a 

variety of off-line learning control algorithms have been 

developed for nonlinear systems [17, 25]. A variety of numerical 

algorithms have been developed for solving the algebraic Riccati 

equation. In recent years, neural network problems have attracted 

considerable attention of many researchers for numerical aspects 

for algebraic Riccati equations see [13, 14, 37, 3].  

 

  
Singular systems contain a mixture of algebraic and differential 

equations. In that sense, the algebraic  

equations represent the constraints to the solution of the 

differential part. These systems are also known as degenerate, 

descriptor or semi-state and generalized state-space systems. The 

complex nature of singular system causes many difficulties in the 

analytical and numerical treatment of such systems, particularly 

when there is a need for their control. The system arises naturally 

as a linear approximation of system models or linear system 

models in many applications such as electrical networks, aircraft 

dynamics, neutral delay systems, chemical, thermal and diffusion 

processes, large-scale systems, robotics, biology, etc., see [6, 7, 

11, 19]. Most of the research on nonlinear singular systems has 

focused primarily on issues related to solvability and numerical 

solutions for such systems [5, 9].  The literature on feedback 

control of nonlinear singular systems is sparse. The feedback 

stabilization problem for nonlinear singular systems is addressed 

by McClamroch [22].  

 

In this paper, we make use of a result that generalizes the LQ 

theory to nonlinear systems to provide a nonlinear design method 

[4, 21]. This nonlinear quadratic (NLQ) method applies to 

systems having a broad class of nonlinear dynamics with state 

dependent weighting matrices. In brief, it turns out that the 

infinite time horizon LQ regulator problem, when solved afresh 

at every point on the state trajectory, leads to an asymptotically 

optimal control policy. The LQ regulator problem converges to 

the optimal control close to the origin.  

 

As the theory of optimal control of linear systems with quadratic 

performance criteria is well developed, the results are most 

complete and close to use in many practical designing problems. 

The theory of the quadratic cost control problem has been treated 

as a more interesting problem and the optimal feedback with 

minimum cost control has been characterized by the solution of a 

Riccati equation. Da Prato and Ichikawa [12] showed that the 

optimal feedback control and the minimum cost are characterized 

by the solution of a Riccati equation. Solving the MRDE is the 

central issue in optimal control theory. The needs for solving 

such equations often arise in analysis and synthesis such as 
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linear-quadratic optimal control systems, robust control systems 

with H2 and H∞ - control [38] performance criteria, stochastic 

filtering and control systems, model reduction, differential games 

etc. One of the most intensely studied nonlinear matrix equations 

arising in mathematics and engineering is the Riccati equation. 

This equation, in one form or another, has an important role in 

optimal control problems, multivariable and large scale systems, 

scattering theory, estimation, detection, transportation and 

radiative transfer [15]. The solution of this equation is difficult to 

obtain from two points of view. One is nonlinear and the other is 

in matrix form. Most general methods to solve MRDE with a 

terminal boundary condition are obtained on transforming MRDE 

into an equivalent linear differential Hamiltonian system [16]. By 

using this approach, the solution of MRDE is obtained by 

partitioning the transition matrix of the associated Hamiltonian 

system [35]. Another class of method is based on transforming 

MRDE into a linear matrix differential equation and then solving 

MRDE analytically or computationally [20, 31, 32]. However, 

the method in[30] is restricted for cases when certain coefficients 

of MRDE are nonsingular. In [16], an analytic procedure of 

solving the MRDE of the linear quadratic control problem for 

homing missile systems is presented. The solution K(t) of MRDE 

is obtained by using K(t) = p(t) / f(t) , where f(t) and p(t) are 

solutions of certain first order ordinary linear differential 

equations. However, the given technique is restricted to single 

input.  

 

There is rarely an analytical solution although several numerical 

computation approaches have been proposed (for example, see 

[28]). A variety of numerical algorithms have been developed for 

solving the algebraic Riccati equation. The approximating 

sequence of Riccati equations feedback algorithm for nonlinear 

optimal control provides outstanding performance in many 

practical applications, in particular, nonlinear solitary wave 

motion [1] and optimal maneuvering of super-tankers at high 

speeds [8]. These makes up for seeking an efficient method for 

solving the nonlinear optimal control problems. However, many 

existing numerical algorithms for solving MRDE for nonlinear 

optimal control optimality have not been proved. Using neural 

networks, a variety of off-line learning control algorithms have 

been developed for nonlinear systems [24, 29]. Neural networks 

have been used to control nonlinear systems (see [10, 27, 33, 

34]). It has been shown that they can effectively extend adaptive 

control techniques to nonlinearly parameterized systems. In 

Miller et. al [23] first proposed using neural networks to find 

optimal control laws using the HJB equation. Parisini and 

Zoppoli [29] used neural networks to derive optimal control laws 

for discrete-time stochastic nonlinear system. The status of 

neural network control appears recently in Narendra and Lewis 

[24].  

Although parallel algorithms can compute the solutions faster 

than sequential algorithms, there is no report on neural network 

solutions for MRDE. Recently solution of MRDE for linear 

singular system is obtained by training feedforward neural 

network using Levenberg-Marquardt algorithm [2].  

This paper is focused upon the implementation of 

neurocomputing approach for solving MRDE from assumed trail 

solution by training the feedforward neural network till the error 

function become zero. The accuracy of MRDE in this approach is 

better than all the existing numerical methods. In this method the 

numerical solution is more or less equivalent to the exact 

solution. The structured neural network architecture is trained to 

prove the efficiency of solutions in shorter computation time. An 

example is given, which illustrates the advantage of the fast and 

accurate solutions of MRDE using neural networks.  

 
This paper is organized as follows. In section 2, the statement of 

the problem is given. In section 3, solution of the MRDE is 

presented. In section 4, numerical example is discussed. The 

final conclusion section demonstrates the efficiency of the 

method. 

 

2. Statement of the Problem 
Consider the nonlinear dynamical singular system that can be 

expressed in the form: 

E (t)=f(x,u)=A(x)x(t)+B(x)u(t),f(0,0)=  t 0, tf]                      

(1) 

where the matrix E is possibly singular, x(t)  Rn is a generalized 

state space vector, u(t)  Rm is a control variable. Then at each 

point  

,  on the state trajectory, the nonlinear system (1) can be defined 

as a linear system by 

E (t) = A( )(t) + B( )u(t),  x(0) = x0      (2)  

where A( )  Rnxn and B( )  Rnxm  are known constant 

coefficient matrices associated with x(t) and u(t) respectively, x0  

is given initial state vector and m≤n. If all state variables are 

measurable, then a linear state feedback control law 

 

                                u(t)= -R-1BT  λ(t) 

can be obtained to the system described by equation (2), where 

                                    λ(t)=K(t)Ex(t), 

 

K(t)=(kij)  Rnxn is a symmetric matrix and is the solution of 

MRDE. 

 

In order to minimize both state and control signals of the 

feedback control system, a quadratic performance index is 

usually minimized: 

min J =  xT (tf) E
T SEx(tf) +  T (t)Qx(t) + uT (t) Ru(t)]dt 

 

where the superscript T denotes the transpose operator,       S  

Rnxn  and Q  Rnxn  are symmetric and positive definite (or 

semidefinite) weighting matrices for x(t),  R  Rmxm  is a 

symmetric and positive definite weighting matrix for u(t). 

 

It is well known in the control literature that to minimize J is 

equivalent to minimize the Hamiltonian equation 

H(x(t),u(t),(t))= xT(t)Qx(t)+ uT(t)Ru(t)+ T(t) 

[A( )(t)+B( )u(t)] 
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The Relative MRDE is 

ET (t)E+ETK(t)A( )+A( )TK(t)E+Q-ETK(t)BR-1BTK(t)E=0     (3) 

 

with terminal condition(TC) K(tf) = ETSE 

 

 After substituting the appropriate matrices in the above 

equation, it is transformed into a system of differential equations. 

Therefore solving MRDE is equivalent to solving the system of 

nonlinear differential equations. 

 

3. Solution of MRDE 
 
Consider the system of differential equation for (3) 

ij(t) = ij(kij(t)), (kij)(tf)=Aij (i, j = 1,2, ….n)                          (4) 

 

3.1. Runge Kutta Solution.  
RK algorithms have always been considered as the best tool for 

the numerical integration of ordinary differential 

equations(ODEs). The system (4) contains n2 first order ODEs 

with n2 variables, RK method is explained for a system of two 

first order ODEs with two variables. 

K11(i+1)   =   k11(i)+ ( k1 + 2k2 + 2k3 +k4) 

K12(i+1)   =   k12(i)+ ( l1 + 2l2 + 2l3 +l4) 

where 

           k1   =   h * 11 (k11,k12) 

           l1   =  h* 12 (k11,k12) 

          k2   =  h* 11(k11 + , k12 + ) 

          l2    =  h* 12(k11 + , k12 + ) 

          k 3   =   h* 11(k11 + , k12 + ) 

           l3     =  h* 12(k11 + , k12 + ) 

           k4    = h * 11(k11 + k3, k12+l3) 

           l4    = h* 12(k11 + k3, k12+l3) 

In the similar way, the original system (4) can be solved for n2 

first order ODE’s. 

3.2 Neural Network Solution. 
 In this approach, new feedforward neural network is used to 

transfer the trail solution of eqution (4) to the neural network 

solution of (4). The trail solution is expressed as the difference of 

two terms as below (see [18]). 

             (kij)a(t) = Aij – tNij(t, wij)                                       (5)     

 

The first term satisfies the TCs and contains no adjustable 

parameters. The second term employs a feedforward neural 

network and parameters wij correspond to the weights of the 

neural architecture.  

 

Consider a multilayer perceptron with n input units, one hidden 

layer with n sigmoidal units and a linear output unit. The 

extension to the case of more than one hidden layer can be 

obtained accordingly. For a given input vector, the output of the 

network is Nij = i) (zi) where zi= ij)tj +ui, wij 

denotes the weight from the input unit j to the hidden unit i, vi 

denotes the weight from the hidden unit i to the output, ui 

denotes the bias of the hidden unit i and  

 is the sigmoid transfer function. 

The error quantity to be minimized is given by 

r= ij)a - ij(t, (kij)a))
2                                                    

(6) 

The neural network is trained till the error function (6) becomes 

zero. Whenever Er becomes zero, the trail solution (5) becomes 

the neural network solution of the equation (4). 

 

FIGURE 1. Neural Network Architecture 

 

3.3. Structure of the FFNN.  
The architecture consists of n input units, one hidden layer with 

n sigmoidal units and a linear output. Each neuron produces its 

output by computing the inner product of its input and its 

appropriate weight vector. During the training, the weights and 

biases of the network are iteratively adjusted by Nguyen and 

Widrow rule [26]. The neural network architecture is given in the 

Fig. 1 for computing Nij . The neural network algorithm was 

implemented in MATLAB on a PC, CPU 1.7 GHz for the neuro 

computing approach to solve MRDE (3) for the nonlinear system 

(1). 

 
Neural network Algorithm 

 
Step 1.  Feed the input vector tj. 

 

Step 2.  Initialize randomized weight matrix wij and  

             bias ui 

Step 3.  Compute zi  = ijtj + ui 

 

Step 4.  Pass zi into n sigmoidal functions. 

Step 5. Initialize the weight vector vi from the hidden unit  

            to output unit.  
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Step 6. Calculate Nij = i) (zi)  

Step 7. Compute purelin function (Nij) 

Step 8. Repeat the neural network training till the following error  

           function 

r = ij)a - ij(t, (kij)a))2  =0 

The solution of MRDE can be obtained using above two 

methods. In the similar way, we can find out the solution of 

MRDE at each value of  and then resultant optimal control can 

be found out for the nonlinear singular system. 

 

4. Numerical Examples 

Example 1 
Consider the optimal control problem: 

Minimize 

J =  x
T (tf)E

TSEx(tf) +  T(t)Qx(t)+uT(t)Ru(t)]dt 

subject to the nonlinear singular system 

E (t) = f(x,u)=A(x)x+B(x)u, f(0,0)=0 

where 

S = , E = , A(x) = , 

B(x) = , R=1, Q= . 

 

The numerical implementation could be adapted by taking  x = 

=1 tf =2 for solving the related MRDE of the above nonlinear 

singular system. The appropriate matrices are substituted in 

equation (3), the MRDE is transformed into system of 

differential equation in k11 and k12. In this problem, the value of 

k22 of the symmetric matrix K(t) is free and let k22 = 0.Then the 

optimal Control of the system can be found out by the solution of 

MRDE. The numerical solutions of MRDE are calculated and 

displayed in the table 1 using the RK-method and the neural 

network approach. A multilayer perception having one hidden 

layer with 10 hidden units and one linear output unit is used. The 

sigmoid activation function of each hidden units is σ(t) = 1/1+e-z. 

 

Now taking  =2, the numerical solution of the MRDE is 

obtained in RK and neural network methods and displayed in the 

table 2. In the similar way, we can find out the solution for 

MRDE at each value of  and then resultant optimal control can 

be found out for the nonlinear singular system in a reduced 

calculus effort.  
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4.1. Solution curves using Neural networks.  
The solution of MRDE and the error between the solution by 

neural network and traditional RK method is displayed in figures 

2, 3, 4 and 5. The numerical values of the required solution are 

listed in the Tables 1 and 2. The computation time for 

neural network solution is 1.6330 sec. whereas the RK method is 

2.1930 sec. Hence the neural solution is faster than RK method. 

The numerical implementation could be adapted by taking x = 

−1 and tf = 2 for solving the related MRDE of the above 

nonlinear singular system. The appropriate matrices are 

substituted in equation (3), the MRDE is transformed into 

system of differential equation in k11 and k12. In this problem, 

the value of k22 of the symmetric matrix K(t) is free and let k22 

= 0. The optimal control of the system can be found out by the 

solution of MRDE. The numerical solution of MRDE are 

calculated and displayed in the table 3 using the RK method and 

the neural network approach.  

 

 

 

 
 

 

 
 

 

Example 2 
 
Consider the optimal control problem: 

Minimize 

J =  x
T (tf)E

TSEx(tf) +  T(t)Qx(t)+uT(t)Ru(t)]dt 

subject to the nonlinear singular system 

E (t) = f(x,u)=A(x)x+B(x)u, f(0,0)=0 

where 

S = , E = , A(x) = , B(x) = ,   

R =1, Q =  
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The solution of MRDE and the error between the solution by 

neural network and traditional RK method is displayed in figures 

6, 7, 8 and 9. The numerical values of the required solution are 

listed in the tables 3 and 4. The computation time for neural 

network solution is 1.7333 sec. whereas the RK method is 

2.8888 sec. Hence the neural network solution is faster than RK 

method. 

 

5. Conclusion 
 
The solution of MRDE can be obtained by neural network 

approach. A neuro computing approach can yield a solution of 

MRDE significantly faster than standard solution techniques like 

RK method.A numerical example is given to illustrate the 

derived results. The long calculus time of finding optimal control 

is avoided by using neuro optimal controller. The efficient 

approximations of the optimal solution are done in MATLAB on 

PC, CPU 1.7 GHz. 
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