
International Journal of Computer Applications (0975 – 8887)

Volume 10– No.10, November 2010

24

A Case Study Approach to Measure the Function Points
from the Points of Relationships of UML

 Dr.GSVP Raju K.Koteswara Rao M Sumender Roy
 CS&ST Dept,Andhra University CSE Dept,GMRIT CSE Dept,GIET

 Vizag, Andhra Pradesh Rajam,Andhra Pradesh Rajahmunndry, Andhra Pradesh

ABSTRACT
The project manager plays the crucial role in the success or

failure of the project. The primary success factor of the project is

accurate forecast of the effort estimations. Unfortunately

accurate forecast of effort estimations stems from the matured

organizations,, others owing to lack of history databases.

Estimations can be done in two ways, one is by estimating the

size of the project and the other is by total functionality of the

project. The primary one is suitable only when the software

experts can able to claim the size of the software project in the

efficient way, but it is not achieved and only 10 percent of the

projects are delivered in on time. Most of the software experts

suggesting that instead of estimating the size of the project it is

better to go for estimating the total functionality of the project.

As a result Function point concept is introduced. This paper

explains about how the Function points can be measured from

the points of relationships of UML with a case study.

Keywords: Function Point,relationship,UML

1. FUNCTION POINTS
Most of software project management experts claim

that length is misleading when trying to size the software

product. A better way to generate effort estimations and

duration estimations from the product is to estimate the

functionality rather than the physical size. Function Points are

the one of the major technique to the major functionality of

the system. This paper explains how the function points can

be measured from the relationships of UML.

Function Points were originally introduced by Allan

Albrecht over 20 years ago. At the early stages function

points can be calculated from UAFP and TCF which

includes the five components which are listed below.

 . External Inputs (EI)

 . External Outputs (EO)

 . External Inquiries (EQ)

 . Internal Files (IF). External Files (EF)

Here file means a user identifiable group of data, thus

not necessary a traditional physical file implemented in

computer system. After EI, EO, EF, IF, EQ is weighted then

unadjusted function point count can be calculated by

summing the all individual counts. After that Total

complexity factor can be calculated from the 15 cost

drivers based on technical and quality requirements. The

multi placation of the UAFP and TCF is called FP.

2. CONCEPTUAL MODEL OF UML
To understand the UML it is necessary to form the conceptual

model of the UML which includes the learning of 3 concepts

 . Building Blocks

 . Rules

 . Common Mechanisms

Building blocks are the necessary elements which includes

 . Things

 . Relationships
 . Diagrams
Things are nothing but abstractions which are first class

citizens can be classified

Structural (Class, Use Case, Interface, Active Class, Component,

Simple Collaboration and Deployment)

Behavioral Things (Interaction and State Machine)

 . Grouping Things (Package)

 . Annotational Things (Note)

Relationship is a semantic link between any two elements of

the above things, which can be classified into Association,

Dependency, Generalization and Realization. Diagrams are

the graphical representation of elements, which are

classified into 2 types.

1. Structural Diagrams (Static Aspects)

Class Diagram

Object Diagram

Component Diagram

Deployment Diagram

2. Behavioral Diagrams (Dynamic Aspects)

• Use Case Diagram

• Activity Diagram

• Interaction Diagram

Sequence Diagram

Collaborations Diagram
• State Chart Diagram

2.1Unified Library Application System
In ULAS member can login into system that means actor is

providing the data to system so it can be counted as External

Input. Actor can visualize the reports in Search and Browse

phase it can be counted as External Output. The ULAS is

maintaining the catalog to authenticate and to respond on

operation, it can be treated as Internal File. The actor can have

the availability to see the reservation details and the

availability details so it can be treated as External File. When

member asked for issue the book then the librarian can checks

reservation, dues etc. it can be treated as External Inquiries. It

can be enough for a rough estimation of effort to only count

the number of transaction types and get an early estimate of

International Journal of Computer Applications (0975 – 8887)

Volume 10– No.10, November 2010

25

the functional size of the designed system. To get more

accurate figures, a base use case diagram is not enough.

Explanations on different use case on natural language provide

more information on attributes of each process. If these are

available, the number of external and internal files can be

calculated more easily and also the complexity factor of each

use case can be extracted from the texts. The extra information

can also become available as the design proceeds .so the

results of function point calculations can be updated and

adjusted when possible. It is a safe to say that the quality of

function point calculation based on use cases is highly

dependent on the quality of the use cases. The more detailed

description of the use cases are the more accurate function

point analysis. Frequently confronted problems with the use

case include also the fact that one use case can contain several

transactions or one transaction can consist of several use cases

2.2 Use case diagram:- It is a brief functionality

of the system. It shows the relationship between actors and

use cases. Use case diagram explains about how the system is

going to interact with the out side environment. The

components are actor, use case, relationship and package. Actor

is some one or something that is interacting with the system.

Use cases are nothing but scenarios of the system. If the

abstraction level of the diagram is more enough an

estimation of the function point can be derived from it.

Different use cases must be consistent and describe the

behavior of the system. Here first defining the boundary of

system of the application which is essential to find whether the

file is internal or external. Here boundary exists between actor

and the system. Transaction type can also be identified easily if

the use cases are defined properly.

Fig:2.1 Unified Library Application System

2.3 CLASS DIAGRAM

Class diagram shows structure of the software system.

The class diagram shows a set of classes, interfaces and

relationships. The components are:

a) Class, interface, package, simple collaboration

b) Relationship: those are Association,

Aggregation ,Generalization ,Composition Dependency

Fig:2.2Unified Library Application System

3. FROM THE POINTS OF

RELATIONSHIPS OF UML:
The relationship can be defined as semantic link between

any two things. In general the UML relationships can be

classified into four types

1.Generalization

2. Association

3.Dependency

4.Realization

This section mainly emphasize how the function points

can be measured from the points of relationships.

3.1 Generalization : Generalization is a specialization

and it is nothing but Inheritance which can be

represented by using solid line with Triangle head

arrow. This relationship can be applied among.

a) actors b) Use cases c) Classes according to the

context.

a) Among the Actors: Actor is some one or some thing

who is interacting with system.

Component Category Weight
Actor simple 1

 Average 2

 Complex 3

According to the number of actors involved, relationship

may be simple /average/complex and weighting also can

be given.

b) Use cases: Use cases are nothing but scenarios of the

system.

Generalization may applied between Use cases also.

International Journal of Computer Applications (0975 – 8887)

Volume 10– No.10, November 2010

26

Component Category Weight
Use case Simple 5

 Average 10

 Complex 15

Here by considering the number of use cases the

relationship may be considered simple/ average/complex

and corresponding weighting factor can be assigned.

 c) Among the Classes: Class is a collection of similar

objects which share the common name , behavior, structure

and properties.

 Component category weight

class Simple 4

 Average 8

 Complex 12

By considering the context the relationship is considered as

above categories which are listed in the table and
weights are assigned. Now it is the time to calculate the
number of generalization relationships

NO\GR= ∑n (NOGAA+NOGAU +NOGAC)

 i =1

= X Function Points. (Assume)

3.2 Association: Association is a structural relationship ,

In UML association is used to represent interaction

among the things. Association may be existed between the

use case and actor, between Classes also.

Association has four properties a) Name

 b) Direction c) Roles d) Multiplicity

a) Between actor and Use case:

 Component Category Weight
Actor &use case Simple

 2

 Complex
4

By considering the context the relationship can be

categorized and weighted as shown in table

b) Among the classes :

Component Category Weight
Classes simple(unidirectional) 2

 complex(Bi directional) 4
Here also relationship category and weightage can be

identified.

Now the number of association relationships can be

calculated.

NOAR = ∑n (NOARBAU+(NOARBC)

i =1

= Y Function Points. (Assume)

3.3 Aggregation and Composition (The forms of

association):

Aggregation and composition both are Stems from the

association. These two are having the some specialized

features in addition to association. Aggregation is a part of

relationship .If we want to express the relationship between

the part and its whole the use of aggregation is best suited . It

can be represented by a solid line with hallow diamond.

Composition is consist of relationship, where it is best

suited to relate whole to its part. It can be represented by a

solid line with filled diamond.

 Component category weight
Class Simple

 5/8

 Complex
10/16

NOAR = ∑n (NOARC) = W Function Points

 i =1

NOCR = ∑n (NOCRC) =Q Function Points (Assume)

 i =1

3.4 Dependency Relationship : Dependency is a using

relationship which can be represented by using dotted line

with arrow. If there is dependency relationship

between A and B that means if any thing changes in A that

will automatically reflect in B. Dependency is existed

between use cases and classes only.

 Component category weight
Use cases Simple 5

 Average 10

 Complex 15
Classes Simple 5

 Average 10

 Complex 15

Now the number of dependency relationship can be

calculated. n

NODR = ∑n ((NODRAC) +(NODRAC))

i =1

= U Function Points(Assume)

3.5 Realization: Realization is a specialization where it can

be existed between two classifiers, where one will act as

contract and the other will give the guarantee to carry out

the contract. It can be represented by using dotted line

with triangle head arrow.

Component category weight

Actor and collaboration complex 5

Identify the relationship category and weightage can be done.

Number of realization relationship can be calculated

NORR = ∑n ((NORRAAC)

International Journal of Computer Applications (0975 – 8887)

Volume 10– No.10, November 2010

27

i =1

= V Function Points(Assume)

Now the relationship function points can be calculated

RFP= ∑ (X+Y+Z+W+U+V+Q) Function Points, and the

Total complexity factor is the multiplication of cost

drives

FP= RFP*TCF

This is about how can function point can be calculated

without considering EI, EO, EQ, IF, EF.

This results screen explains about how we can give

weightage to the components in the relationships so that

the above procedure can be carried out.

4. CONCLUSIONS
UML Relationships and Diagrams can be useful basis to

calculate function points in the early phase of the life cycle

of a software system. This paper introduced the idea of using

UML Relationships as the starting point and gave the brief

introduction on how to get the building blocks of the function

point analysis out of the diagrams, Relationships. The

original Albrecht’s method used in our course relies heavily

on assignment of the individual weighting factor, is

restricted by the purpose of its development and lacks the

systematic approach to be used directly to build automated

tools for calculating function point. This is why several more

suitable methods have been developed, using these

methods with carefully constructed UML specifications,

function points can be calculated effectively already in the

early phases of a design process.

Note:

NOGR=number of generalization relationships

NOGAA= number of generalization among the actors

NOGAU= number of generalization among the use cases

NOGAC= number of generalization among the classes

NOAR= number of association relationships

NOARBAU= number of association relationships

between actors and use cases

NOARBC= number of association relationships between

classes

NODR= number of dependency relationships

NODRAU= number of dependency relationships among

actors and use cases

NODRAC= number of dependency relationships among

actors and classes

NORR= number of realization relationships

NORRAAC= number of realization relationships among

actors and simple collaboration

NOCR = Number of composition relationships .

NOCRC = Number of composition relationships among the

classes.

TCF=total complexity factor

5. REFERENCES
[1] A.J Albrecht. Function point analysis. Encyclopedia of

software engineering, 1:John Wiley & Sons, 1994.

[2] Rational. UML1.1 Notation guide. Rational Software,1997

[3] S.Zamir. Handbook of Object Technology. CRC Press, 1999.

[4] Grady Booch, James Rumbaugh, Jacobson “Unified

Modeling Language User Guide”. PE,ISBN 81-7758-372-7

[5]. Pankaj Jalote ,” An Integrated Approach to Soft ware

Engineering” 2 nd Edition , Narosa Publishing

House,2004,Chapter-4 (Planning a Software Project),Pg no.
166-170. ISBN – 81-7319-271-5

[6]. Roger S Pressmen, “Software Engineering - a Practitioner’s

Approch” 6th Eddition Mc Graw Hill international Edition,
Pearson education, ISBN 007 - 124083 - 7

[7]. Waman S Jawdekar, “Software Engineering Principles and
Practices” Tata Mc graw hill ISBN 0 -07 - 058371 – 4

[8]. Walker Royce “Software Project Management - A unified

frame work” 2nd Edition, low price Edition, ISBN 81 -
7758 - 378 - 6, pearson education

 [9]. Ian somarville, “Software Engineering” 5th Edition low
price Edition, International Computer Science Series.

 [10]. Shari, Laurance, Pfleeger, “Software Engineering theory

and practies” 2nd Edition, ISBN 81 - 7808 - 4589 - 7, low

price edition.

 [11]. Carlo ghezzi, Mehdi Jazayeri Dino Mandrioli,

“Fundamentals of Software Engineering”, PHI, ISBN 81 -
203 - 0865 .

