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ABSTRACT 

The basic operations on the graphs with millions of vertices are 

common in various applications. To have faster execution of such 

operations is very essential to reduce overall computation time. 

Today’s Graphics processing units (GPUs) have high 

computation power and low price. This device can be treated as 

an array of Single Instruction Multiple Data (SIMD) processors 

using CUDA software interface by Nvidia. Massively 

Multithreaded architecture of a CUDA device makes various 

threads to run in parallel and hence making optimum use of 

available computation power of GPU. In case of graph 

algorithms, vertices of the graphs are processed in parallel by 

mapping them to various threads on device. By making 

thousands of threads to run in parallel, computation time 

required for these algorithms is drastically decreased as 

compared to their CPU implementation. 

We studied different parallel algorithms for Breadth first search, 

all pairs shortest path that are carried out on GPU using CUDA 

and make their comparative study with respect to execution time, 

data structure used, input data etc. In the paper, we presented 

overview of various parallel methods carried out on GPU using 

its multithreaded architecture for BFS, APSP by various authors. 

General Terms 

Parallel computing, Graph Algorithms, SIMD architecture, GPU, 

CUDA. 
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1. INTRODUCTION 

1.1 Need of Performance Improvement in 

large graph algorithms 
Graphs are very popular data representations in various fields 

including scientific and engineering domains. In some problems 

large graphs with millions of vertices are to be processed. These 

operations have found applications in various problems like map 

of the countries, routing analysis, transportation, robotics, VLSI 

chip layout, network traffic analysis, data mining, and plant & 

facility layout etc. Basic operations on the graphs such as 

Breadth first search, all pairs shortest path, max flow/min cut 

algorithm plays important role in such problems. Sequential 

methods for such graph operations are available but they are not 

that efficient with respect to computing time and use of available 

resources [1]. It is always essential to have faster execution of 

such operations to reduce overall complexity of whole problem 

[4]. Also, to store the graph with millions of vertices in a file and 

processing of such a large file in efficient manner is a 

challenging task. For this purpose, various data structures are 

studied and compared for their performance with respect to space 

complexity. 

1.2 Graphics Processing Unit (GPU) 
GPU stands for Graphics Processing Unit and is a single chip 

processor used primarily for 3D applications. It creates lighting 

effects and transforms objects every time a 3D scene is redrawn. 

These are mathematically-intensive tasks, which otherwise, 

would put quite a strain on the CPU. Lifting this burden from the 

CPU frees up cycles that can be used for other jobs. GPU 

provides high computational power with low costs. More 

transistors can be devoted for data computation rather than data 

caching & flow control as in case of CPU. With multiple cores 

driven by very high memory bandwidth, today's GPUs offer 

incredible resources for both graphics and non-graphics 

processing. 

1.3 Compute Unified Device Architecture 

(CUDA) 
CUDA stands for Compute Unified Device Architecture and is a 

new hardware and software architecture for computation on 

GPU. This architecture is by Nvidia and it makes use of 

maximum of the computation power provided by GPU by 

deploying massive multithreading. Also, GPU and CUDA can be 

used in association to design and implement any general purpose 

application on GPU, thus making it GPGPU (General purpose 

graphics processing unit). CUDA provides an API that’s an 

extension to the C programming language for a minimum 

learning curve. It also provides general DRAM memory 

addressing for more programming flexibility i.e. both scatter and 

gather memory operations. It features a parallel data cache or on-

chip shared memory with very fast general read and writes 

access, that threads use to share data with each other [2]. GPU 

and CUDA collectively used to achieve parallelism in great 

sense. 

The overview of the graph algorithms on GPU using CUDA 

presented here is organized as follows. Section 2 is about the 

various possible representations of the graphs. The details of 

CUDA hardware and software models are described in section 3. 

Then types of graphs used in experiments and some 

terminologies related to the topic are covered. Section 6 talks 

about the Parallel implementation of the breadth first search. 

Subsequent sections contain overview of parallel single source 

shortest path and all pairs shortest path. 
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2. GRAPH REPRESENTATION ON CUDA 

DEVICE 
It is very important to have efficient way of storing the complex 

graphs, as it involves millions of vertices. We have various data 

structures those can be used to store such graphs. J. Hyvonen et 

al. [5] have studied these data structures in depth for CPU. It is 

very much useful in case of sparse representations.  

In case of GPU, it does not allow the use of user defined data 

structures very well. So it is very challenging job to represent the 

data as an efficient data structure [6]. With the help of CUDA, 

GPU can be programmed with better data representations as 

CUDA treats memory as a general array and hence can support 

efficient data structures. For the graph G (V, E), adjacency 

matrix is popular data structure as it is very simple to represent 

and to understand. However in case of large graphs with millions 

of vertices, it is not the good choice as space requirement is 

O(V²). Also in case of sparse graphs, it has various entries zero. 

Adjacency list is a better choice for storing the graphs. Vibhav 

Vinit et al.[7] have suggested the use of packed adjacency list 

representation for the graphs. It consists of two lists for vertex 

and the edges in the graph. Every vertex in the vertex list points 

to its starting edge list in the packed adjacency list of edges. This 

uses feature of CUDA as it supports uneven array size. This 

approach is very efficient with respect to space complexity as it 

requires just O(V+E) memory size.  

3. COMPUTE UNIFIED DEVICE 

ARCHITECTURE (CUDA) 
Compute Unified Device Architecture (CUDA) is a new software 

and hardware architecture for issuing and managing 

computations on the GPU as a data parallel computing device 

(SIMD) without the need of mapping them to a graphics API. 

CUDA has been developed by Nvidia and to use this architecture 

requires an Nvidia GPU. It is available for the GeForce 8 series 

GPUs, Tesla Solutions and some Quadro Solutions. 

3.1 Hardware Model 
CUDA Device is collection of various multiprocessors with m 

processors each (figure 1). Each multiprocessor has a Single 

Instruction, Multiple Data architecture (SIMD). It has its own 

shared memory which is common to all the processors inside it. 

The processors within multiprocessors have set of 32-bit 

registers, texture and constant memory caches. Texture and 

constant caches are read only cached memory space and texture 

cache is optimized for texture fetching operations. These 

multiprocessors communicate with each other through the device 

memory, which is available to all processors of the 

multiprocessors. 

 

Figure 1: CUDA Hardware Model 

3.2 Programming Model 
A CUDA program is organized into a host program, consisting of 

one or more sequential threads running on the host CPU, and one 

or more parallel kernels that are suitable for execution on a 

parallel processing device like the GPU.As a software interface, 

CUDA API is a set of library functions which can be coded as an 

extension of the C language. A compiler generates executable 

code for the CUDA device. 

 

 

Figure 2: CUDA Software Model 
 

As a software interface, CUDA API is a set of library functions 

which can be coded as an extension of the C language. A 

compiler generates executable code for the CUDA device. For 

the programmer, the CUDA model is a collection of threads 

running in parallel. A warp is a collection of threads that can run 

simultaneously on a multiprocessor. The warp size is fixed for a 

specific GPU, 32 on present GPUs. The programmer decides the 

number of threads to be executed. If the number of threads is 

more than the warp size, they are time-shared internally on the 

multiprocessor. A collection of threads (called a block) is 

mapped to a multiprocessor at a given time (figure 2). A thread 

block is a batch of threads that can cooperate together by 

efficiently sharing data through some fast shared memory and 

synchronizing their execution to coordinate memory accesses. 
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 Multiple blocks can be assigned to a multiprocessor and their 

execution is time-shared. A single computation on a device 

generates a number of blocks. A collection of all blocks in a 

single computation is called a grid. All threads of the blocks 

mapped to a multiprocessor divide its resources equally amongst 

themselves. Each thread and block is given a unique ID that can 

be accessed within the thread during its execution. Each thread 

executes a single instruction set called the kernel. GPU is a co-

processor to the CPU and needs to be initiated by the CPU. 

3.3 Extensions to C programming language 
CUDA supports various programming languages like C, C++, 

JAVA with JCUDA. It provides some extensions to program on 

CUDA device i. e. Kernel code. Some examples include: 
 Function type qualifiers to specify whether a function is 

executed on the device or the host and whether it is callable 

from the device or the host. E.g. _device_, _global_, _host_  

 Variable type qualifiers to specify the memory space in which 

a variable resides. E.g. _device_, _constant_, _shared_. 

 A directive to be given while the execution of a kernel and 

which specifies the execution model viz. the grid and block 

dimensions. 

 Variables to specify grid and block dimensions and block and 

thread IDs. E.g. griddim, threadIDx, blockdim, blockIDx, 

warpsize. 

Also, CUDA provides some additional libraries such as 

following. 

 The CUBLAS library: CUBLAS is an implementation of 

BLAS (Basic Linear Algebra Subprograms) on top of the 

CUDA driver. It provides functions to create matrix and 

vector objects in GPU memory and process them; uploading 

the final result in host memory in the end. 

 The CUFFT library: CUFFT provides a simple interface for 

computing parallel Fast Fourier Transforms on the GPU. 

4. TYPES OF GRAPHS 
There are three major categories of the graphs. Experiments on 

these graphs are carried out. Random Graphs are the graphs in 

which there is not much difference in the degrees of the vertices 

in the graph as well as large number of vertices have similar 

degrees. A slight variation from the average degree results in a 

drastic decrease in number of such vertices in the graph. In case 

of R-MAT / Scale Free graphs, a large number of vertices have 

small degree with a few vertices having large degree. This model 

best approximates large graphs found in real world. For these 

graphs, it is difficult to predict the load on processors at 

particular time and processing activities in two iterations may 

vary greatly. Due to its small degree distribution over most 

vertices and uneven degree distribution these graphs expand 

slowly in each iteration and exhibit uneven load balancing on the 

threads. Therefore these graphs have poor performance even after 

applying multithreading as compared to the other graphs. 

SSCA#2 graphs are made up of random sized cliques of vertices 

with a hierarchical distribution of edges between cliques based 

on a distance metric. It is explained by D A Badar et al [9]. 

There is one more type of graph called grid graphs. In grid 

graphs each node has fixed number of neighbors. Therefore the 

number of nodes traversed in current level is almost same as 

those in previous one. 

5. SOME BASIC TERMINOLOGIES 
 Heterogeneous programming: The Compute Unified Device 

Architecture (CUDA) from Nvidia presents a heterogeneous 

programming model where the parallel hardware can be 

used in conjunction with the CPU. This provides good 

control over sequential flow of execution which was absent 

from the earlier GPGPU. Serial code executes on the host 

while parallel code executes on the device. 

 Host and Skeleton: CPU is known as Host. Also, code to be 

run on Host as skeleton code. Basically these are the 

sequential steps necessary for synchronization of threads 

and performed on CPU.  

 Device and Kernel: The steps which are specific to the 

algorithm we are constructing are to be run on GPU and is 

called device code or Kernel. 

 Synchronization of the threads: The CUDA hardware can be 

seen as a multicore/manycore co-processor in a bulk 

synchronous parallel mode when used in conjunction with 

the CPU. As we know, there are thousands of vertices to be 

processed at a time, so it is very essential to have 

synchronization between the threads running in parallel. 

 Bulk synchronous parallel model (BSP): CUDA hardware is 

used in conjunction with CPU. Synchronization of the 

threads is achieved with CPU deciding the barrier for 

synchronization. Concurrent computation takes place on 

each processing element asynchronously. Processing 

elements exchange the data between them if necessary. 

Each thread waits for all other threads to finish achieving 

synchronization. 

6. PARALLEL BREADTH FIRST SEARCH 
The Breadth first search (BFS) has tremendous applications in 

various areas. These include image processing, space searching, 

network analysis, graph partitioning, automatic theorem proving 

etc. The BFS problem is, given an undirected, unweighted graph 

G(V,E) and a source vertex S, find the minimum number of 

edges needed to reach every vertex V in G from source vertex S. 

The best time complexity reported for sequential algorithm is 

O(V+E). 

6.1 BSP mode and Level Synchronization 
P. Harish et al. [11] solve the problem using concept of level 

synchronization, in which all the vertices at particular level are 

processed in parallel. It assigns a thread to every vertex. 

Concurrent computation takes place at vertices of current level 

and all threads waits for other threads at that level to finish, 

treating CUDA device as bulk synchronous parallel model. They 

maintained one global cost array Ca of size V, which contains the 

number of edges needed to reach that vertex from source vertex. 

Also, frontier array Fa contains the vertices at the current level. 

Vertices those are present in frontier array updates the costs of 

their neighbor vertices with cost of itself plus one. Vibhav et al. 

[7] have used vertex compaction process with the help of prefix 

sum i. e. deploying threads only for those vertices which are 

active. At particular time, only small number of vertices may be 

active. Vertex compaction is very useful for removing 

unnecessary threads. They carried out experiments on various 

types of graphs and compared the results with the best sequential 

implementation of BFS. 
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It shows lower performance on low degree graphs. In such case, 

parallelism is achieved at small extent i. e. very small number of 

vertices is processed at a time in linear graphs. Due to linear 

nature of R-MAT graphs, expansion of frontier is very slow at 

every level and it results in low multithreading. Also, uneven 

load balancing is one reason for poor performance of such 

graphs. Authors report 5 times speed up in case of R-MAT 

graphs. In case of random graphs and SSCA#2 graphs, expansion 

of frontier is somewhat uniform and enough number of threads is 

deployed at every level. This results in speed up of nearly 15 

times over their CPU implementation [7]. 

6.2 Lockstep BFS for grid graphs 
The method mentioned in 6.1 utilizes an array of flags of length 

V, as number of nodes traversed at each depth level is arbitrary 

and not depends upon the number of nodes in previous level. On 

the other hand, there is one type of graphs in which every vertex 

has fixed number of neighbors, called grid graphs. During graph 

traversal, single direction is traversed at a time. Such traversal 

guarantees that particular vertex is traversed from a single vertex 

only. Also, number of nodes traversed in certain depth level is 

nearly same as that in its preceding depth level. Mohamed 

Hussein et al. [16] have implemented this method, called 

Lockstep BFS for grid graphs. They concluded when traversing 

nodes at depth level k from nodes at depth level k-1, applying the 

lockstep BFS traversal technique allows us to use an array of 

flags whose size is equal to the number of nodes in level k-1, 

which is much smaller than V, total number of vertices in the 

graph. 

7. PARALLEL SINGLE SOURCE 

SHORTEST PATH 
The single source shortest path (SSSP) problem is, given 

weighted graph G(V, E, W) with all weights positive, find the 

smallest combined weights of the edges between other vertices in 

the graph and given source vertex. Dijkstra’s sequential 

algorithm requires computation time of O (VlogV+E).  

Parallel implementations of SSSP using CUDA are carried out by 

some researchers. P. Harish et. al. [11] and Vibhav et. al [7] 

reports good speed up over CPU counterpart of SSSP. Unlike 

BFS, level synchronization is not possible in case of SSSP due to 

the reason that cost may change later on discovering less 

weighted path between the vertices. Vibhav et al. [7] 

demonstrate multithreading to great extent. They  maintains two 

arrays, one Boolean array as Execution mask Ma which contains 

the vertices currently getting processed and cost array Ca which 

holds the smallest weight of the path between source vertex and 

other vertices. The vertices present in Ma updates the cost of all 

its neighbors. Here two costs are compared, one of which is the 

current cost of the neighbor and other is cost of current plus the 

weight between the current and neighbor vertices. The minimum 

of these two is appended to cost array Ca. The whole procedure 

ends when execution mask gets empty or no further changes in 

cost array.   

During this process, simultaneous updating may take place at 

same location in Ca. This problem is resolved by maintaining the 

alternate array Cua and using atomic functions provided by 

CUDA. These functions are used to resolve the concurrent writes 

by allowing only one thread to write at certain place at a time.  

P. Harish et. al.  [11] consider the graphs with degree per vertex 

6-7 and weights ranging from 1-10 and report speed up of 70 

times over CPU version of SSSP. Scale free graphs have large 

degree at some vertices, which results in more lookups to the 

device memory and hence computation time gets increased. Due 

to this, like BFS, SSSP also shows lower performance for scale 

free graphs than random graphs.  Vibhav et al [7] experimented 

on bigger graphs with average degree 12 and weights up to 100 

on GTX 280 GPU. As compared to boost sequential 

implementation of SSSP, they gain speed up of 20.  R-MAT 

graphs perform badly as compared to other types of graphs. 

Vertex compaction process is used here also and observed 40% 

improvement in computation time than normal parallel version in 

case of R-MAT graphs.  

8. PARALLEL ALL PAIRS SHORTEST 

PATH 
In all pairs shortest path problem (APSP), given an weighted 

graph   G(V, E, W) with positive weights, aim is to find out least 

weighted path from every vertex to every other vertex. Floyd-

Warshall’s, the well known APSP algorithm requires O(V³) 

computing time and O(V²) space. Due to this large space 

requirement, it is not feasible to handle the large graphs with 

millions of vertex on GPU as memory size restrictions.  

8.1 APSP using SSSP 
This approach suggests implementing APSP by running Single 

source shortest path (SSSP) for every vertex. P. Harish et al. [11] 

have carried out this approach. They reported that SSSP requires 

O (V) space. They considered large graphs with average degree 

of vertex as 6-7, maximum degree as thousand and average 

weights 1-10 in magnitude. This SSSP implementation carried 

out on GPU NVIDIA Geforce 8800 GTX is 70 times faster than 

its CPU counterpart. Also, for random graphs SSSP timings are 

comparable to those for BFS. They conclude that FW algorithm 

on GPU requires single O(V) operation looping over O(V²) 

threads which creates extra overhead for context switching the 

threads whereas their approach of APSP using SSSP requires 

only O(V) threads. 

8.2 Tiled FW algorithm 
The problem of restrictions on the graph size due to available 

memory is solved by Katz et al. [12]. Their approach handles 

graph size larger than on-board memory available to the GPU by 

breaking the graphs in nontrivial on-chip shared memory cache 

efficient manner to increase performance and is shared memory 

cache efficient. They implemented blocked (tiled) formulation of 

the algorithm. The basic idea is to revise original FW algorithm 

into a hierarchically parallel method that can be distributed, in 

parallel, across multiple processors on the GPU and further on 

multiple GPUs. Matrix is partitioned in sub blocks of equal size 

and processed. This technique provides 60-130X speedup over a 

standard CPU solution O(V³). The implementation of this 

method on NVIDIA QUADRO FX 5600 is 5-6.5 times faster 

than previous approach by P. Harish et al. [11]. 

8.3 Matrix multiplication method 
Vibhav et al [7] have used adjacency matrix for cache efficient 

graph representation. The two methods are designed and 

implemented for APSP and they reported better results than any 
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of the previous work for the algorithm. Like Katz et al. sub 

matrices of a matrix are processed but in different ways. This 

technique provides two new ideas as follows: 

 Streaming blocks: It is assumed that CPU memory is large 

enough for storing large graphs. Adjacency matrix present in 

the CPU memory is divided into the rectangular row and 

column sub matrices. These are streamed into the host global 

memory. 

 Lazy minimum evaluation: For sparse graphs the connections 

are few and the other entries of the adjacency matrix are 

infinity. For the entry infinity, all operations on that can be 

skipped without missing correctness and hence skipping all 

paths involving a non-existent edge. It is reported that this 

method results in speed up of 2 to 3 times. 

As compared to Katz et al. this matrix based method proves to be 

2-4 times faster for larger graphs. 

8.4 Gaussian Elimination based method 
The Gaussian elimination based APSP by Buluc et al [13] based 

on idea of splitting each APSP step recursively into 2 APSPs 

involving graphs of half the size. The base case is when there are 

16 or fewer vertices, Floyd’s algorithm is applied. It is fastest 

among the all approaches for APSP. However, introducing the 

Lazy minimum evaluation to that approach provides further 

speed up of 2-3 times, according to Vibhav et. Al [7]. 

9. CONCLUSION AND FUTURE WORK 
In the paper we presented overview of the graph algorithms like 

BFS, APSP those are implemented on GPU using CUDA in 

parallel. For storing the input graph and the results of the 

algorithms, it is very important to use efficient data structure. As 

compared to the CPU implementation of such graphs, GPU 

implementation achieves very great speed up. It is very important 

how programmers make optimum use of multithreading that can 

be possible on CUDA device.  

We think it is also useful to print the subsequent vertices those 

found in the shortest path for any algorithm. Also, sometimes 

there is need of first n shortest paths in the graph i. e. first 

shortest, second shortest etc. In future, we will be working on 

these two requirements in graph algorithms. 
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