
International Journal of Computer Applications (0975 – 8887)

Volume 10– No.5, November 2010

41

Improving Software Reliability using Software Engineering

Approach- A Review

Aasia Quyoum
Research Scholar

University of Kashmir (India)

Mehraj – Ud - Din Dar
Director, IT & SS

University of Kashmir (India)

S. M. K. Quadri
Director Computer Sciences
University of Kashmir (India)

ABSTRACT

Software Reliability is an important facet of software quality.

Software reliability is the probability of the failure free operation

of a computer program for a specified period of time in a specified

environment. Software Reliability is dynamic and stochastic. It

differs from the hardware reliability in that it reflects design

perfection, rather than manufacturing perfection. This article

provides an overview of Software Reliability which can be

categorized into: modeling, measurement and improvement, and

then examines different modeling technique and metrics for

software reliability, however, there is no single model that is

universal to all the situations. The article will also provide an

overview of improving software reliability and then provides

various ways to improve software reliability in the life cycle of

software development.

Keywords

Reliability, Modeling, Simulation, Software, Engineering.

1. INTRODUCTION
With the advent in the computer era, computes are playing very

important role in our daily lives. Dish washers, TV‟s, Microwave

Ovens, AC‟s are having their analog and mechanical parts

replaced by digital devices, CPU‟s and software‟s. Increasing

competition and high development costs have intensified the

pressure to quantify software quality and to measure and control

the level of quality delivered. There are various software quality

factors as defined by MC Call and ISO 9126 standard, however,

Software Reliability is the most important and most measurable

aspect of software quality. This paper tries to give general idea for

software reliability and the metrics and models used for that. This

will also focus on using software engineering principles in the

software development and maintenance so that reliability of

software will be improved.

2. RELIABILITY
Software Reliability is defined as the probability of the failure

free software operation for a specified period of time in a

specified environment [ANSI91] [Lyu95].

Unreliability of any product comes due to the failures or presence

of faults in the system. As software does not „wear-out” or “age”,

as a mechanical or an electronic system does, the unreliability of

software is primarily due to bugs or design faults in the software.

Reliability is a probabilistic measure that assumes that the

occurrence of failure of software is a random phenomenon.

Randomness means that the failure can‟t be predicted accurately.

The randomness of the failure occurrence is necessary for

reliability modeling. In [MIO87], it is suggested that reliability

modeling should be applied to systems larger than 5000 LOC.

3. RELIABILITY PROCESS
The reliability process in generic terms is a model of the

reliability-oriented aspects of software development, operations

and maintenance. The set of life cycle activities and artifacts,

together with their attributes and interrelationships that are

related to reliability comprise the reliability process. The artifacts

of the software life cycle include documents, reports, manuals,

plans, code configuration data and test data. Software reliability is

dynamic and stochastic. In a new or upgraded product, it begins at

a low figure with respect to its new intended usage and ultimately

reaches a figure near unity in maturity. The exact value of product

reliability however is never precisely known at any point in its

lifetime.

4. SOFTWARE RELIABILITY CURVE
Software errors have caused human fatalities. The cause has

ranged from poorly designed user interface to direct programming

errors. Software will not change over time unless intentially

changed or upgraded. Software does not rust, age, wear-out, or

deform. Unlike mechanical parts, software will stay as is unless

there are problems in design or in hardware. Software failures

may be due to errors, ambiguities, oversights or misinterpretation

of the specification that the software is supposed to satisfy,

carelessness or incompetence in writing code, inadequate testing,

incorrect or unexpected usage of software or other unforeseen

problems [Keller91].

Over time, hardware exhibits the failure characteristics as shown

in Figure 1. Known as bathtub curve.

Software is not susceptible to the environmental maladies that

cause hardware to wear out; therefore, the failure rate curve for

software should take the form of the “idealized curve” as shown

in Figure 2. Undiscovered defects will cause high failure rates

early in the life of a program. Once these are corrected (possibly

without introducing other errors) the curve flattens. In the useful

life phase, software will experience a drastic increase in failure

rate each time an upgrade is made. The failure rate levels off

gradually, partly because of the defects found and fixed after the

upgrade.

International Journal of Computer Applications (0975 – 8887)

Volume 10– No.5, November 2010

42

“Figure 1” Bathtub curve for hardware

Reliability

“Figure 2” Software Reliability curve

In Figure 2 Considering the “actual curve|”, during the software‟s

life, software will undergo feature upgrades. For feature upgrades

the complexity of software is likely to be increased, since

functionality of software is enhanced, causing the failure rate

curve to spike as shown in Figure 2. Before the curve return to the

original steady state failure rate, another upgrade is requested

causing the curve to spike again. Slowly, the minimum failure

rate level begins to rise-the software is deteriorating due to

upgrade in feature. Since the reliability of software keep on

getting decreased with increase in software complexity, a possible

curve is shown in Figure 3.

“Figure 3”

5. SOFTWARE RELIABILITY ACTIVITIES
The reliability process in generic terms is a model of the

reliability- oriented aspects of software development, operations,

and maintenance. Quantities of interest in a project reliability

profile include artifacts, errors, defects, corrections, faults, tests,

failures, outages, repairs, validation, and expenditures of

resources, such as CPU time, manpower effort and schedule time.

The activities relating to reliability are grouped into classes:

Construction
 Generates new documentation and code artifacts

Combination
Integrates reusable documentation and code components with new

documentation and code components

Correction
Analyzes and removes defects in documentation and code using

static analysis of artifacts.

Preparation
Generates test plans and test cases, and readies them for

execution.

Testing
 Executes test cases, whereupon failure occur

Identification
Makes fault category assignment. Each fault may be new or

previously encountered.

Repair
Removes faults and possibly introduces new faults.

Validation
Performs inspections and checks to affirm that repairs are

effective

Retest
Executes test cases to verify whether specified repairs are

complete if not, the defective repair is marked for repair. New test

cases may be needed.

International Journal of Computer Applications (0975 – 8887)

Volume 10– No.5, November 2010

43

6. SOFTWARE RELIABILITY METRICS
Software Reliability Measurement is not an exact science. Though

frustrating, the quest of quantifying software reliability has never

ceased. Until now, we still have no good way of measuring

software reliability.

 Measuring software reliability remains a difficult problem

because we don't have a good understanding of the nature of

software. There is no clear definition to what aspects are related

to software reliability. We cannot find a suitable way to measure

software reliability, and most of the aspects related to software

reliability.

It is tempting to measure something related to reliability to reflect

the characteristics, if we can not measure reliability directly. The

current practices of software reliability measurement can be

divided into four categories: [RAC96].

6.1 Product metrics

Software size is thought to be reflective of complexity,

development effort and reliability. Lines of Code (LOC), or LOC

in thousands (KLOC), is an intuitive initial approach to

measuring software size. But there is not a standard way of

counting. Typically, source code is used (SLOC, KSLOC) and

comments and other non-executable statements are not counted.

This method cannot faithfully compare software not written in the

same language. The advent of new technologies of code reuses

and code generation technique also cast doubt on this simple

method.

Function point metric is a method of measuring the functionality

of a proposed software development based upon a count of inputs,

outputs, master files, inquires, and interfaces. The method can be

used to estimate the size of a software system as soon as these

functions can be identified. It is a measure of the functional

complexity of the program. It measures the functionality delivered

to the user and is independent of the programming language. It is

used primarily for business systems; it is not proven in scientific

or real-time applications.

Complexity is directly related to software reliability, so

representing complexity is important. Complexity-oriented

metrics is a method of determining the complexity of a program's

control structure, by simplifying the code into a graphical

representation. Representative metric is McCabe's Complexity

Metric.

Test coverage metrics are a way of estimating fault and

reliability by performing tests on software products, based on the

assumption that software reliability is a function of the portion of

software that has been successfully verified or tested.

6.2 Project management metrics

Researchers have realized that good management can result in

better products. Research has demonstrated that a relationship

exists between the development process and the ability to

complete projects on time and within the desired quality

objectives. Costs increase when developers use inadequate

processes. Higher reliability can be achieved by using better

development process, risk management process, configuration

management process, etc.

6.3 Process metrics

Based on the assumption that the quality of the product is a direct

function of the process, process metrics can be used to estimate,

monitor and improve the reliability and quality of software. ISO-

9000 certification, or "quality management standards", is the

generic reference for a family of standards developed by the

International Standards Organization (ISO).

6.4 Fault and failure metrics

The goal of collecting fault and failure metrics is to be able to

determine when the software is approaching failure-free

execution. Minimally, both the number of faults found during

testing (i.e., before delivery) and the failures (or other problems)

reported by users after delivery are collected, summarized and

analyzed to achieve this goal. Test strategy is highly relative to

the effectiveness of fault metrics, because if the testing scenario

does not cover the full functionality of the software, the software

may pass all tests and yet be prone to failure once delivered.

Usually, failure metrics are based upon customer information

regarding failures found after release of the software. The failure

data collected is therefore used to calculate failure density, Mean

Time between Failures (MTBF) or other parameters to measure

or predict software reliability.

Besides the above metrics, other possible metrics are:

6.5 Efficiency

The amount of computing time and resources required by software

to perform desired function it is an important factor in

differentiating high quality software from a low one.

6.6 Integrity

 The extent to which access to software or data by unauthorized

persons can be controlled Integrity has become important in the

age of hackers.

6.7 Flexibility

 The effort required to transfer the program from one hardware to

another.

6.8 Interoperability

 The effort required to couple one system to another as indicated

by the following sub-features: adaptability, insatiability,

conformance, replacebility.

6.9 Maintainability

It is the ease with which repair may be made to the software as

indicated by the following sub-feature: analyzability,

changeability, stability, testability. If a software needs” less mean

time to change (MTTC), it means it needs less maintainability.

International Journal of Computer Applications (0975 – 8887)

Volume 10– No.5, November 2010

44

7. SOFTWARE RELIABILITY

IMPROVEMENT TECHNIQUES

Good engineering methods can largely improve software

reliability. In real situations, it is not possible to eliminate all the

bugs in the software; however, by applying sound software

engineering principles software reliability can be improved to a

great extent.

The application of systematic, disciplined, quantifiable approach

to the development operation and maintenance of software will

produce economically software that is reliable and works

efficiently on real machines [IEEE93].Figure 4. shows Software

Engineering being the layered technology focuses on the quality

and reliability of software.

“Figure 4” Engineering approach to high quality software

development

7.1 Process
 Process defines a framework [PAU93] that must be established

for effective delivery of software engineering technology. It forms

the basis for management control of software projects and

establishes the context in which technical methods are applied,

work products (models, documents, data, reports, forms etc) are

produces, milestones are established, quality is ensured, and

change is properly managed.

The process itself should be assessed to ensure that it meets the

basic process criteria that are necessary for successful software

engineering. The possible relationship between the software

process and the methods applied for evaluation and improvement

is shown in Figure 5.

7.2 Software Engineering Methods
Software engineering methods provide technical “how to‟s” for

building software. These methods consist of a broad array of tasks

that include requirement analysis, design modeling, program

construction, testing and support.

“Table 1”

O
m

is
si

o
n

In
co

rr
ec

t

F
ac

t

In
co

n
si

st
en

cy

A
m

b
ig

u
it

y

26% 10% 38% 26%

“Figure 5”

7.2.1 Requirement Analysis
In the early days of software development, emphasis was on

coding and testing but researchers have shown that requirement

analysis is the most difficult and intractable activity and is very

error prone .In this phase software failure rate and hence the

reliability can be increased by:

a) Properly identifying the requirements.

b) Specifying the requirements in the form of software

requirement specification (SRS) document. The basic

goal of SRS is to describe the complete external behavior

of proposed system [Dav93].

c) Requirement reviews (Validating the SRS.)

d) Developing the prototypes.

e) Performing structured analysis for developing conceptual

models using data flow diagrams (DFDs).

f) Make estimations of effort, cost and task duration.

g) Performing the Risk management which involves risk

management and control.

Some projects have collected data about requirement errors. In

[Dav89] the effectiveness of different methods and tools in

detecting requirement errors in specifications for a data

processing application is reported in Table 1. On an average, a

International Journal of Computer Applications (0975 – 8887)

Volume 10– No.5, November 2010

45

total of more than 250 errors were detected, and the percentage of

different types of errors was:

7.2.2 Modeling Design
Design activity is the first step in moving from problem domain to

solution domain. The goal of the design is to produce the model of

the system which can be later used to build up the system. In this

phase reliability can be improved by:

a) Using “Divide and conquer” principle that is dividing

the system into smaller pieces (modules) so that each

piece can be conquered separately.

b) Abstraction of components so that maintenance will

become easy.

c) Performing different levels of factoring.

d) Controlling and understanding the interdependency

among the modules.

e) Design Reviews to ensure that design satisfies the

requirements and is of good quality.

f) Reducing the coupling between modules and

increasing cohesion within a module.

g) Developing design iteratively.

7.2.3 Program Construction
 It includes coding and some testing tasks. In this phase software

reliability can be increased by:

a) Constraining algorithms by following

structured programming [BOH00] practice.

b) Write self-documenting code.

c) Creating interfaces that are consistent with

architecture,

d) Conducting a code walkthrough.

e) Performing unit tests.

f) Refactoring code.

7.2.4 Testing
After the code construction of software products, testing,

verification and validation are necessary steps. Software testing is

heavily used to trigger, locate and remove software defects.

Software testing is still in its infant stage; testing is crafted to suit

specific needs in various software development projects in an ad-

hoc manner. Various analysis tools such as trend analysis, fault-

tree analysis, Orthogonal Defect classification and formal

methods, etc, can also be used to minimize the possibility of

defect occurrence after release and therefore improve software

reliability.

A strategy for testing may be viewed as shown in Figure 6.It starts

with testing the individual modules and then progresses by

moving upward to integration testing where the modules are

collectively tested for errors. In validation testing customer

requirements are validated against the software that has been

developed. Finally in system testing, the entire software is tested

as a single unit. Once the above testing strategy will be followed

for software testing, software reliability can be highly improved.

Figure 7 shows the effect of identifying and removing errors in the

early phases of software development, on the software reliability.

“Figure 7”

After deployment of the software product, field data can be

gathered and analyzed to study the behavior of software defects.

Fault tolerance or fault/failure forecasting techniques will be

helpful techniques and guide rules to minimize fault occurrence or

impact of the fault on the system.

“Figure 6” Testing Strategy

International Journal of Computer Applications (0975 – 8887)

Volume 10– No.5, November 2010

46

7.3 Software Engineering Tools

Software engineering provides a collection of tools that helps in

every step of building a product and is termed as CASE

(Computer Aided Software Engineering) tools. Case provides the

software engineer with the ability to automate manual activities

and assist in analysis, design, coding and test work. This leads to

high quality and high reliable software

8. SOFTWARE RELIABILITY MODELING
To study a system, it is possible to experiment with the system

itself or with the model of the system, but experimenting with the

system itself is very expensive and risky. The objective of many

system studies, however is to predict how a system will perform

before it is built. Consequently, system studies are generally

conducted with a model of a system. A model is not only a

substitute of a system; it is also a simplification of the system.

A number of software reliability models have emerged as people

try to understand the attributes of how and why software fails, and

try to quantify software reliability. Over 200 models have been

proposed since 1970s, but how to quantify software reliability still

remains unsolved. There is no single model that can be used in all

the situations. No model is complete; one model may work well

for a set of certain software, but may be completely off track for

other kinds of problems.

Most existing analytical methods to obtain reliability measures for

software systems are based on the Markovian models and they

rely on the assumption on exponential failure time distribution.

The Markovian models are subject to the problem of intractably

large state space. Methods have been proposed to model

reliability growth of components which can not be accounted for

by the conventional analytical methods but they are also facing the

state space explosion problem. A simulation model, on the other

and offers an attractive alternative to analytical models as it

describes a system being characterized in terms of its artifacts,

events, interrelationships and interactions in such a way that one

may perform experiments on the model, rather than on the system

itself, ideally with indistinguishable results.

9. RELIABILITY SIMULATION
Simulation refers to the technique of imitating the character of an

object or process in a way that permit us to make quantified

inferences about the real object or process. In the area of software

reliability, simulation can mimic key characteristics of the

processes that create, validate, and revise documents and code.

Reliability modeling ultimately requires good data. But software

projects do not always collect data sets that are comprehensive,

complete, or consistent enough for effective modeling research or

model application. Further, data required for software reliability

modeling in general seem to be even more difficult to collect than

other software engineering data.

10. SIMULATION PROCESS
Since good data sets are so scarce, one purpose of simulation is to

supply carefully controlled, homogeneous data or software

artifacts having known characteristics for use in evaluating the

various assumptions upon which existing reliability models have

been built. Since actual software artifacts(such as faults in

computer programs) and processes(such as failure and fault

removal) often violate the assumptions of analytic software

reliability models, simulation can perhaps provide a better

understanding of such assumptions and may even lead to a better

explanation of why some analytic models work well in spite of

such violations.

Some of the steps involved in the process of simulation study are

illustrated by the flowchart of Figure 6.

“Figure 6” The process of simulating

An initial step is to describe the problem to be solved in a concise

manner. Based on this problem definition, a model must be

defined. It is at this point that it becomes apparent whether the

model can be kept in a form that allows analytical techniques to

be used. When it is decided to simulate, the experimental nature

of the simulation technique makes it essential to plan the study by

deciding upon the major parameters to be varied, the number of

cases to be conducted and the order in which runs are to be made.

Given that the simulation is to be on the digital computer, a

program must be written.

Once the model is decided, we need to verify the model and then

executing a series of runs according to the study plan. As results

are obtained, it is likely that there will be many changes in the

International Journal of Computer Applications (0975 – 8887)

Volume 10– No.5, November 2010

47

model and the study plan. The early runs may make parameter

significance clear and so lead to the reassessment of the model.

Verification of results is important after each run. Sometimes it is

useful to repeat runs so that parts of model have different random

numbers on each run.

11. CONCLUSION
Computers are playing very important role in our day-to-day life

and there is always a need of high quality software. Software

reliability is the most measurable aspect of software quality.

Unlike hardware, software does not age, wear out or rust,

unreliability of software is mainly due to bugs or design faults in

the software. Software reliability is dynamic & stochastic. The

exact value of product reliability is never precisely known at any

point in its lifetime. The study of software reliability can be

categorized into three parts: Modeling, Measurement &

improvement. Many Models exist, but no single model can

capture a necessary amount of software characteristics. There is

no single model that is universal to all the situations. Simulations

can mimic key characteristics of the processes that create, validate

& review documents & code. Software reliability measurement is

naive. It can‟t be directly measured, so other related factors are

measured to estimate software reliability. Software reliability

improvement is necessary & hard to achieve. It can be improved

by sufficient understanding of software reliability, characteristics

of software & sound software design. Complete testing of the

software is not possible; however sufficient testing & proper

maintenance will improve software reliability to great extent.

12. REFERENCES
[1] C. T. Lin, C. Y. Huang, and C. C. Sue, “Measuring and

Assessing Software Reliability Growth Through Simulation-

Based Approaches,” Proceedings of the 31st IEEE Annual

International Computer Software and Applications

Conference (COMPSAC 2007), pp. 439-446, Beijing, China,

July 2007.

[2] J. Lo, S. Kuo, M.R. Lyu, and C. Huang, “Optimal Resource

Allocation and Reliability Analysis for Component-Based

Software Applications,” Proc. 26th Ann. Int'l Computer

Software and Applications Conf. (COMPSAC), pp. 7-12,

Aug. 2002.

[3] John D. Musa, “Operational Profiles in Software-Reliability

Engineering,” IEEE Software, v.10 n.2, p.14-32, March 1993

[4] Kishor S. Trivedi, “Probability and statistics with reliability,

queuing and computer science applications,” John Wiley and

Sons Ltd., Chichester, UK, 2001

[5] K. Kanoun M. Kaaniche C. Beounes J.C. Laprie and J. Arlat,

“Reliability Growth of Fault-Tolerant Software,” IEEE

Trans. Reliability, vol. 42, no. 2, pp. 205-219, June 1993.

[6] Kumar, M., Ahmad, N., Quadri, S.M.K. (2005), "Software

reliability growth models and data analysis with a Pareto

test-effort", RAU Journal of Research, Vol.15, No. 1-2, pp

124-8

[7] Norman F. Schneidewind, “Fault Correction Profiles,

“Proceedings of the 14th International Symposium on

Software Reliability Engineering, p.257, November 17-21,

2003

[8] Quadri, S.M.K., Ahmad, N., Peer, M.A. (2008), "Software

optimal release policy and reliability growth modeling",

Proceedings of 2nd National Conference on Computing for

Nation Development, INDIACom-2008, New Delhi, India,

pp 423-31

[9] R.C.Tausworthe, "A General Software Relibility Process

Simulation Technique,"NASA JPL Publication, 91-7, April

1991.

[10] R.C.Tausworthe and M.R, Lyu, "A generalized technique for

simulating software relibility,"IEEE Software,”Vol.13, No.2,

pp.77-88, March 1996.

[11] Robert C. Tausworthe , Michael R. Lyu, “A Generalized

Technique for Simulating Software Reliability, “IEEE

Software, v.13 n.2, p.77-88, March 1996

[12] S.Gokhale, M. R.Lyu, and K. S. Trividi," Reliability

Simulation of Component-Based Software

Systems,"Proceedings of the 19th International Symposium

on Software Reliability Engineering, pp. 192-201,

Paderborn, Germany, November 1998.

[13] S.Gokhale, Michael R. Lyu, and K.S. Trivedi." Reliability

Simulation of Fault-Tolerant Software and Systems". In Proc.

of Pacific Rim International Symposium on Fault-Tolerant

Systems (PRFTS '97), pp. 197-173, Taipei, Taiwan,

December 1997.

[14] S. Krishnamurthy , A. P. Mathur, On The” Estimation Of

Reliability Of A Software System Using Reliabilities Of Its

Components,” Proceedings of the Eighth International

Symposium on Software Reliability Engineering (ISSRE '97),

p.146, November 02-05, 1997

[15] Swapna S. Gokhale , Kishor S. Trivedi, “A time/structure

based software reliability model,” Annals of Software

Engineering, v.8 n.1-4, p.85-121, 1999

[16] Swapna S. Gokhale , Kishor S. Trivedi , Michael R. Lyu,

“Reliability Simulation of Fault-Tolerant Software and

Systems,” Proceedings of the 1997 Pacific Rim International

Symposium on Fault-Tolerant Systems, p.167, December 15-

16, 1997

[17] S. Y. Kuo, C. Y. Huang, and M. R. Lyu, “Framework for

Modeling Software Reliability, Using Various Testing-

Efforts and Fault-Detection Rates,” IEEE Transactions on

Reliability,” Vol. 50, No. 3, pp. 310-320, Sept. 2001.

[18] Tausworthe, Robert C., "A General Software Reliability

Process Simulation Technique," Technical Report 91-7, Jet

Propulsion Laboratory,Psaadena, CA, March 1991.

[19] Wood, A. (1996), "Predicting software reliability", IEEE

Computers, Vol.11, pp 69-77 Von Mayrhauser, A.,Malaiya,

Y.K.,Keables, J.,and Srimani, P. K., "On the Need for

Simulation for better Characterization of Software

Reliability, "International Symposium on Software

Reliability Engineering,” Denver, CO, 1993.

http://doi.ieeecomputersociety.org/resolve?ref_id=doi:10.1109/CMPSAC.2002.1044526&rfr_id=trans/ts/2005/08/tts2005080643.htm
http://doi.ieeecomputersociety.org/resolve?ref_id=doi:10.1109/CMPSAC.2002.1044526&rfr_id=trans/ts/2005/08/tts2005080643.htm
file:///H:\synopsis\citation.cfm%3fid=625270&dl=GUIDE&coll=GUIDE&CFID=80887871&CFTOKEN=97338568
file:///H:\synopsis\citation.cfm%3fid=625270&dl=GUIDE&coll=GUIDE&CFID=80887871&CFTOKEN=97338568
http://portal.acm.org/citation.cfm?id=501883&dl=GUIDE&coll=GUIDE&CFID=80456370&CFTOKEN=27358763
http://portal.acm.org/citation.cfm?id=501883&dl=GUIDE&coll=GUIDE&CFID=80456370&CFTOKEN=27358763
http://portal.acm.org/citation.cfm?id=501883&dl=GUIDE&coll=GUIDE&CFID=80456370&CFTOKEN=27358763
file:///H:\synopsis\citation.cfm%3fid=952374&dl=GUIDE&coll=GUIDE&CFID=80888821&CFTOKEN=17595753
file:///H:\synopsis\citation.cfm%3fid=952374&dl=GUIDE&coll=GUIDE&CFID=80888821&CFTOKEN=17595753
file:///H:\synopsis\citation.cfm%3fid=952374&dl=GUIDE&coll=GUIDE&CFID=80888821&CFTOKEN=17595753
file:///H:\synopsis\citation.cfm%3fid=952374&dl=GUIDE&coll=GUIDE&CFID=80888821&CFTOKEN=17595753
http://portal.acm.org/citation.cfm?id=625571&dl=GUIDE&coll=GUIDE&CFID=80456370&CFTOKEN=27358763
http://portal.acm.org/citation.cfm?id=625571&dl=GUIDE&coll=GUIDE&CFID=80456370&CFTOKEN=27358763
http://portal.acm.org/citation.cfm?id=625571&dl=GUIDE&coll=GUIDE&CFID=80456370&CFTOKEN=27358763
file:///H:\synopsis\citation.cfm%3fid=856087&dl=GUIDE&coll=GUIDE&CFID=80888821&CFTOKEN=17595753
file:///H:\synopsis\citation.cfm%3fid=856087&dl=GUIDE&coll=GUIDE&CFID=80888821&CFTOKEN=17595753
file:///H:\synopsis\citation.cfm%3fid=856087&dl=GUIDE&coll=GUIDE&CFID=80888821&CFTOKEN=17595753
file:///H:\synopsis\citation.cfm%3fid=856087&dl=GUIDE&coll=GUIDE&CFID=80888821&CFTOKEN=17595753
file:///H:\synopsis\citation.cfm%3fid=856087&dl=GUIDE&coll=GUIDE&CFID=80888821&CFTOKEN=17595753
http://portal.acm.org/citation.cfm?id=590674&dl=GUIDE&coll=GUIDE&CFID=80456370&CFTOKEN=27358763
http://portal.acm.org/citation.cfm?id=590674&dl=GUIDE&coll=GUIDE&CFID=80456370&CFTOKEN=27358763
http://portal.acm.org/citation.cfm?id=590674&dl=GUIDE&coll=GUIDE&CFID=80456370&CFTOKEN=27358763
file:///H:\synopsis\citation.cfm%3fid=827023&dl=GUIDE&coll=GUIDE&CFID=80887871&CFTOKEN=97338568
file:///H:\synopsis\citation.cfm%3fid=827023&dl=GUIDE&coll=GUIDE&CFID=80887871&CFTOKEN=97338568
file:///H:\synopsis\citation.cfm%3fid=827023&dl=GUIDE&coll=GUIDE&CFID=80887871&CFTOKEN=97338568
file:///H:\synopsis\citation.cfm%3fid=827023&dl=GUIDE&coll=GUIDE&CFID=80887871&CFTOKEN=97338568
file:///H:\synopsis\citation.cfm%3fid=827023&dl=GUIDE&coll=GUIDE&CFID=80887871&CFTOKEN=97338568

