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ABSTRACT 
Noise robustness is one of the most challenging problem in 

automatic speech recognition. The goal of robust feature 

extraction is to improve the performance of speech recognition in 

adverse conditions. The mel-scaled frequency cepstral 

coefficients (MFCCs) derived from Fourier transform and filter 

bank analysis are perhaps the most widely used front-ends in 

state-of-the-art speech recognition systems. One of the major 

issues with the MFCCs is that they are very sensitive to additive 

noise. To improve the robustness of speech front-ends we 

introduce, in this paper, a new set of MFCC vector   which is 

estimated through three steps. First, the relative higher order 

autocorrelation coefficients are extracted.  Then   magnitude 

spectrum of the resultant speech signal is estimated through the 

fast Fourier transform (FFT) and it is differentiated with respect 

to frequency. Finally, the differentiated magnitude spectrum is 

transformed into MFCC-like coefficients. These are called 

MFCCs extracted from Differentiated Relative Higher Order 

Autocorrelation    Sequence    Specrum    (DRHOASS).    

Speech    recognition experiments for various tasks indicate that 

the new feature vector is more robust than traditional mel-scaled 

frequency cepstral coefficients (MFCCs) in additive noise 

conditions. 
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1. INTRODUCTION 
Acoustic features may greatly affect the performance of a speech 

recognizer. A great deal of work has been done for feature 

extraction [1]. In the literature, various approaches have been 

proposed to improve the tolerance of an ASR system with 

respect to noise, such as Wiener filtering [2], spectral subtraction 

[3], RASTA [4], lin-log RASTA [5], parallel model 

compensation (PMC) [6], vector Taylor series approximation 

based model compensation [7] etc. Noise robust spectral 

estimation using MFCC has been discussed in  with the name   

of autocorrelation   mel-frequency   cepstral   coefficients   

(AMFCC).   As   the autocorrelation of noise could in many 

cases be considered relatively constant over time, a high pass 

filtering of the autocorrelation sequence (RAS) , could lead to 

substantial reduction of the noise effect. Furthermore, it has been 

shown that preserving spectral peaks is very important in 

obtaining a robust set of features for ASR [8]. Methods such as 

peak-to-valley ratio locking [9] and peak isolation (PKISO) [10] 

have been found very useful in speech recognition error rate 

reduction. In the present paper, we present a novel technique of 

computing speech coefficients by using  the magnitude spectrum 

of the relative one-sided higher-order autocorrelation sequence, 

differentiating  it and then processing it  through  a  Mel  filter  

bank  and  finally parameterized   it  in  terms  of  MFCCs.  The 

paper organization is as follows. Section 2 gives a description of 

the newly proposed technique of feature extraction. Section 3 

explains in detail the proposed method along with the block 

diagram. Finally, an experimental comparison of the proposed 

feature set with MFCCs is presented in section 4, followed by 

conclusion in section 5. 

 

2. EXTRACTION IN AUTOCORRELATION DOMAIN 

If u (m, n) is the additive noise, x (m, n) noise-free speech signal 

and h (n) impulse response of the channel, then the noisy speech 

signal y (m, n) can be written as: 

y(m,n) = [x(m,n) + u(m,n)]⊗ h(n), 0≤m≤M-1 , 0≤n≤N-1  (1)
 

Where M denotes the number of frames in an utterance and N 

denotes the number of samples in a frame and ⊗ denotes the 

convolution operation. As we intend to use our method to 

remove or reduce additive noise from noisy speech signal, 

therefore the channel effect will not be considered here. We will 

then have 

y(m,n) = [x(m,n) + u(m,n)],  0≤m≤M-1 , 0≤n≤N-1                    (2)

 If the noise is uncorrelated with the speech, it follows 

that the autocorrelation of the noisy speech y(m,n) is the sum of 

autocorrelation of the clean speech x(m,n) and autocorrelation of 

the noise u(m,n),i.e. 

ryy(m,k) = rxx(m,k) + ruu (m,k), 0≤m≤M-1 , 0≤k≤N-1 (3)

 
where ryy(m, k), rxx(m, k) and ruu(m, k) are the one-sided   

autocorrelation sequences of noisy speech, clean speech and 

noise respectively, and k is the autocorrelation sequence index  

within  each  frame.  If  the additive  noise  is  assumed  to  be  

stationary,  the autocorrelation sequence of noise can be 

considered to be identical for all frames.  Hence, the frame index 

m can be dropped out, and equation (3) becomes 

 

ryy(m,k) = rxx(m,k) + ruu (k), 0≤m≤M-1 , 0≤k≤N-1  (4) 

Eliminating the lower order of the noisy speech signal 

autocorrelation coefficients should lead to removal of the main 

noise components[11]. The maximum autocorrelation index to 

be removed is usually found experimentally, where D represents 

elimination threshold. 

ryy(m,k)= ryy(m,k) if  D≤k≤N-1and  ryy(m,k)=0 if 0≤k<D   (5) 
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Differentiating the resultant autocorrelation sequence with 

respect to m, will give Relative Autocorrelation Sequence (RAS) 

of noisy speech at the mth frame[12]. In order to get DRHOASS, 

we take differentiation of the spectrum of the filtered signal .This 

further contributes to immunization against noise. By this 

approach the flat parts of the spectrum are almost removed while 

each spectral peak is split into two, one positive and one 

negative. 

 

3. PROPOSED METHOD 
This section describes our novel method to obtain new set of 

MFCC feature vectors. First,   we   pre-emphasis   the   input   

speech signal using a pre-emphasis filter H (z) = 1- 0.97 z
-1   

. 

Then  we  perform frame blocking with a frame size of 16ms 

and a frame shift of 8 ms so that signal can be analyzed 

sequentially in a frame-wise manner. The Hamming window is 

applied to the pre-emphasized signal and then, the 

autocorrelation sequences of the framed signal are obtained. The 

lower lags of the autocorrelation sequence less than 1.375 ms 

(experimentally derived) are removed. A FIR high-pass filter is 

then applied to the signal autocorrelation sequence to further 

suppress the effect of additive noise. Then, the short-time 

Fourier transform of this filtered signal is calculated. In the next 

step, differential power spectrum of the filtered signal is found. 

Since the noise spectrum, in many occasions may be considered 

flat, in comparison to the speech spectrum, the differentiation 

either reduces or omits these relatively flat parts of the spectrum, 

leading to even further suppression of the effect of noise. A set of 

cepstral coefficients (DRHOASS-MFCC) are f i n a l l y  

derived from the magnitude of the differentiated high order 

relative autocorrelation power spectrum by  applying it to a 

conventional mel- frequency filter-bank and passing the 

logarithm of the output to a DCT block. MFCC vector set of 

dimension 39 is formed by concatenating energy, Delta MFCC 

and Delta- Delta MFCC. Front-end for extraction of MFCC 

vector set by DRHOASS has been shown in Figure. 1. 

 

 

 

 

 

 

 

 

 

 

 

 

4. RECOGNITION EXPERIMENT  
The proposed approach was implemented on TIFR Hindi speech 

database of 200 Hindi words, spoken by 30 speakers. The spoken 

samples were recorded by 15 male, 10 female and 5 child 

speakers (5 repetitions) in a studio environment condition using 

Sennheiser  microphone  model  MD421  and  a  tape  recorder  

model  Philips  AF6121.Database was divided into training set 

and testing set. Features vector sets of size 39 are extracted using 

different front-ends (MFCC (for comparison purposes), RAS-

MFCC, AMFCC and our method DRHOASS-MFCC) and their 

performances are compared. 

 

a) Testing on Clean Speech  

This experiment is to evaluate the performance of MFCC, RAS-

MFCC, AMFCC and DRHOASS-MFCC, when training data & 

the testing data are in clean (40 dB) environment.  The results 

are shown in Table 1. These are the baseline results for 

comparison purposes. Performance on the basis of recognition 

rates is observed to be more or less same if we use either MFCC, 

RAS-MFCC, AMFCC or DRHOASS-MFCC. This shows that 

the spectral information derived by DRHOASS method captures 

the speech information to the same extent as that by other 

method. 

 

b) Testing on Noisy Speech   

The polluted testing utterances are generated by adding the 

artificial noises at five SNR levels. The white noise is generated 

by using a random number generation program, and other 

colored noises, i.e., factory noise, F16 noise, and babble noise, 

are extracted from the NATO RSG-10 corpus [13]. The noises 

are added to the clean speech signal at 20, 15, 10 5 and 0 dB 

SNRs. Figure 2(a)-(d) shows the results obtained using MFCC, 

RAS-MFCC, AMFCC and DRHOASS front-ends. For the case 

of speech sounds corrupted by white noise as shown  in Fig. 

2(a),  the  performance  of  MFCC  degrades  most  significantly 

among  all  features, and found to be worst among  RAS-MFCC, 

AMFCC and DRHOASS-MFCC. As evident from Figure 2(a)  

DRHOASS-MFCC are quite robust to the additive noise. 

 

Figures 2(b), (c) and (d) compares  the performance of different 

front ends when the testing speech is corrupted by factory, 

babble, and f16 noise respectively. The figures depict that the 

performance of MFCC degrades significantly as compared to 

other feature vectors. The best performance comes from 

DRHOASS-MFCC. Improvement in recognition score of 5.62% 

at 20dB, 10.14% at 15 dB, 12.55% at 10 dB, 15.87% at 5dB 

and 13.3% at 0dB was seen in comparison to RAS-MFCC. It was 

primarily due to the removal of lower order autocorrelation 

coefficients in DRHOASS-MFCC which was not in the case 

of RAS-MFCC. Similarly improvement in recognition scores 

of the tune of  6.92% at 20dB, 14.9% at 15 dB, 17.8% at 

10dB, 23.2% at 5dB and 15.8% at 0dB   was analyzed in 

comparison to AMFCC feature vector set. Although in both 

the feature vector sets (DRHOASS-MFCC and AMFCC) lower   

autocorrelation coefficients are discarded but due to the high 

pass filtering as the additional step in DRHOASS-MFCC, it 

showed a remarkable improvement. 

 

Table 1. Comparison of clean-train and clean test recognition 

rates for various features 
Feature Type       MFCC    AMFCC RAS-MFCC     DRHOASS-MFCC  

Recognition rate  98.241    98.246 98.30      99.64 

% at 40 dB 
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Figure 1.  Block diagram for extracting MFCC by DRHOASS  
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Figure 2(a) Recognition rate (%) for testing speech corrupted by 

white noise. 

 
 

 

Figure 2(b) Recognition rate (%) for testing speech corrupted by 

factory noise. 

 
 

 

Figure 2(c) Recognition rate (%) for testing speech corrupted by 

babble noise. 

 
 

 

 

Figure 2(d) Recognition rate (%) for testing speech corrupted by 

F16 noise. 

 

5. CONCLUSION  
In this paper, we proposed a novel feature  extraction technique 

using Differentiated Relative Higher Order Autocorrelation 

sequence spectrum (DRHOASS) for computing MFCC feature 

vector set. The DRHOASS- MFCCs showed remarkable increase 

in word recognition rate as compared to other traditional 

methods utilizing MFCC. I t  was  fo u n d  th a t  h igher order 

autocorrelation coefficients a l o n g  with additional filtering 

improved the robustness of the speech recognition system under 

different background noises. 
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