
International Journal of Computer Applications (0975 – 8887)

Volume 11– No.5, December 2010

20

Performance Comparison of Web Services under

Simulated and Actual Hosted Environments

 Sandesh Tripathi S Q Abbas
 Integral University Integral University
 Kursi Road, Lucknow Kursi Road, Lucknow
 India India

ABSTRACT
Web Services are modular applications that are published,

advertised, discovered and invoked across a network, i.e, an

Intranet or the Internet. It is based on the software services model,

in which these may participate as individual or as a component of

other services and applications. This research follows a

performance testing approach for Web Services under simulated

and actual hosted environment. The study compares the

performance parameters –response time, throughput for web

services, which helps the developer in early development life

cycle of web services. Such study helps in tuning the applications

before putting it before the world. Our measurements suggest that

from modeling perspective web services can be simulated first and

tested for various performance metrics, which give results close to

the original one.

Keywords

Web Services Performance, Performance Modeling, Throughput,

Response Time.

1. INTRODUCTION
Web Services are the software technology that uses XML to share

data. It is used to expose methods over web through SOAP

(Simple Object Access Protocol), described by WSDL (Web

Services Description Language), registered in UDDI (Universal

Description, Discovery and Integration). WSDL enables language

independent description of types, messages, port types and port

used in a web service. The server makes these methods available.

These methods when called will perform some action and/or

return some data. The web services standard spells out in great

detail how a client machine can invoke a web service method

from a server. The significant advantage of using web services

over the previous interoperability attempts, such as CORBA

(Common Object Request Broker Architecture), is that it utilizes

open standards based on Web/Internet ubiquitous technologies

such as XML, HTTP, and SMTP. Herein the SOAP payload is

widely transported using mainly HTTP protocol. [18]

Many applications in the areas of finance, distributed computing,

e-commerce and GIS have been exposed using web services, but

performance issues of Web Services may limit their applicability

in some situations. Compared to RMI, Web Services put few

restrictions, such as no support for object references, absence of

distributed garbage collection etc. The eXtensible Markup

Language (XML) produces human readable text and is emerging

as the standard for data interoperability among WSs and

cooperative applications that exchange data. XML documents

consist of elements, tags, attributes, etc. and satisfy precise

grammatical rules [2]. Due to the use of XML based protocol

(SOAP) performance will be a concern.

This study performs test on web services under simulated

environment and hosted environments.

This paper is structured as: Section 2 details the related work,

Section 3 describes the performance bottlenecks, Section 4

describes the performance evaluation, measurement and simulated

environment, Section 5 explains the result and outcomes.

2. RELATED WORK
Performance in web services is an open problem. In order to study

the performance of Web Services many studies have been done.

In paper [3] Osama Hamed and Nidal Kafri presented a

performance testing approach that aims to utilize load testing tools

to give ideas about performance issues early in development life

cycle for applications implemented using Java EE and .net

Platform.

Eduard and Zeigler [6] identified and presented relevant

differences between network management and simulation for

testing network mechanisms. But such a study was still a need

concerning the performance of Web Services.

Martiz B. juric etc. [10] compared different approaches for

distributed Java applications, which communicate through fire

wall and proxy secured networks. The study concludes that RMI

performs better than web services.

Govindaraju etc. [12] compared the performance of gSOAP, Axis

C++, Axis Java, .net and XSOAP/XSUL toolkits. This paper

focused on SOAP performance on scientific data. It raised the

features of SOAP that affect Web Services performance.

Ng. etc [17] studied the latency throughput and serialization and

deserialization overheads of different messages exploring the

encoding styles supported by each evaluated toolkit.

Ana C. C. Machado. Carlos A. G. Ferraz.[18] presented

guidelines of two mostly used Java Web Services toolkits- Apache

Axis and Sun Java web Services Developer pack (JWSDP),they

also gave recommendations on the use of SOAP features to

guarantee interoperability between toolkits.

Lisa Wells, etc. [9] presented a general framework for modeling

distributed computing environments for performance analysis by

means of timed hierarchical coloured petri nets.

Vast numbers of performance studies have been done but there

was a need to compare the results under simulated and hosted

environments for web services.

International Journal of Computer Applications (0975 – 8887)

Volume 11– No.5, December 2010

21

3. PERFORMANCE BOTTLENECKS
Serialization is an integral part of both web services and network

centric data base applications. The process of converting data

from one format to another is known as serialization. With a

network connection, the receiving process consumes arriving

messages, re-assembles the transmitted objects and processes

them. Once the data has been serialized, at a later point of time it

has to be deserialized Web Services spend considerably more time

for XML serialization and deserialization, which is used for

creating SOAP messages (com.sun.xml.rpc package).[10]

Two common encoding mechanisms are XML and Binary. XML

produces human readable text and is employed when

interoperability with other web services is essential. Binary

produced streams are compact to parse, but not human readable.

Figure 1: Stages to send and receive a SOAP message

3.1Message Size of XML Messages,

Serialization, Deserialization and network

level over heads
It is suggested that [11], when the message size is large, i.e. in

comparable size of RAM, XML encoding diminishes the

Response time, because it inflates the message size, causing the

operating system to write either a part or the entire message to

disk. XML encoder results in message size that are at times five

times larger than their binary representation. In some [18] cases it

is even 4 to 10 times bigger than its binary version. This

expansion in message size have greater impact on communication

and on the total RTT , in this way it affects the throughput

requiring more processing time.

The serialization of Java Objects in XML consumes 10 times

more memory than the binary serialization and that the cost

associated with communication and copy of the data are lesser

than the costs of serialization and deserialization. It has been

identified that 50% of the total time are spent in the codification

of the SOAP messages in XML before of the transmission for the

server and in creation of the HTTP connection. Whereas the .Net

Frame work provides a number of serialization options. The one

that is pertinent to Web Services is XMLserialization, which

involves serializing in memory data to an XML format. With Web

Services this XML formatted version of data is sent from the

client consuming the web service, to Web Service, or vice-a-

versa. The nice thing about the .NET framework‟s serialization

capabilities is that a developer, have to do a very little.

The overhead introduced by the HTTP protocol is also

considerable. [16] The specification demands that the client

establishes a new connection before each request and that the

server to close connection after sending the response. The

responses start by indicating which version of HTTP server is

running, followed by a series of optional object headers; the most

important among them is „Content-type‟, which indicates the type

of object being returned and the „Content-Length‟, which

indicates the length. The header is terminated by an empty line.

The server now sends any requested data. After the data have been

sent, the server drops the connection. HTTP it seems spends more

time waiting than it does in transferring data.

3.2 Connection Establishment, Data Transfer:

Windows and Slow Start
TCP establishes connections via a three way hand shake. The

client sends a connection request, the server responds, and the

client acknowledges the response. The client can send data along

with the acknowledgement. Since the client must wait for the

server to send its connection response, this procedure sets a lower

bound on the time of RTTs.

Instead of having to wait for each packet to be acknowledged,

TCP allows the sender to send out new segments even though it

may not have received acknowledgement for previous segments.

To prevent the sender from overflowing the receiver buffers, in

each segment the receiver tells the sender how much data it is

prepared to accept without acknowledgement. This value of

window size, tells the sender the maximum amount of

unacknowledged data that the receiver is prepared to let it have

outstanding, the receiver cannot know how much data the

connecting networks are prepared to carry. If the network is quite

congested, sending a full window worth of data will even cause

worse congestion. TCP determines the best rate to use through a

process called Slow Start. With Slow Start, the sender maintains

and calculates a second window of unacknowledged segments

known as Congestion Window. When a connection first starts up,

each sender is only allowed to have a single unacknowledged

segment in transit. Every time a segment is acknowledged without

a loss, the congestion window is opened; every time a segment is

lost and timed out, the window is closed.

This approach is ideal for normal conditions; these connections

tend to last a relatively long time, and the effect of slow start is

negligible. For short lived connections, the effect of slow start is

devastating.

4. PERFORMANCE EVALUATION
The model used for web traffic generation is called SURGE,

published in paper [8]. In order to get a constant load for each

scenario the numbers of users are fixed. SURGE derives

probability distributions for web traffic properties. For the

comparison, the surge traffic generator is implemented for both

simulation and measurement. For simulation the generator is

tightly integrated in the ns network simulator, for the

measurement it is implemented as a traffic generator application.

This generation application (GA) is divided into a WS server

Sending a SOAP message

Receiving a SOAP message

Network

Data

Serialization

Buffering

Send

Deserialization

Interpretation

Parser

Read

International Journal of Computer Applications (0975 – 8887)

Volume 11– No.5, December 2010

22

application which listens for connection requests from clients

WSs. A client WS (GA) sends requests according to the SURGE

random variable. Network access is accomplished by means of

socket interface. To manage parallel connections a thread is

spawned for every connection. The client and server part contains

logic for efficiently managing load generating hundred users per

host.

4.1 The measurement and simulated

environment
The hardware platform consists of two PCs. One is server and the

other is client. The client and server was connected using

LINKSYS Ethernet switch. The server is configured with a

Microsoft Windows 2000 Server, Visual studio .net. The server

implements a Web Service which accepts query from the client

and returns back the client.The test bed used for measurement

consists of X86 architecture node with Free BSD 4.4 installed and

is used either as server, client or router. All host and router PCs

are connected with 100 Mbps full-duplex links in order to avoid

collisions. The bottleneck link between routers is emulated using

a software link emulator known as dummynet, which is a part of

Free BSD kernel.

Figure 2: Test Topology

The server part of the traffic generator is installed on node S,

machine while the client part is installed on C machine. Using this

topology the network environment is tested with low load (20, 50

users) to medium load users (100, 400 users).

The Simulation part of this comparison is performed with the

network simulator ns. The effort has been done to make the

simulation as close to measurement as possible. The bottleneck

emulation is done by dummynet, which is used in the test bed, has

been added to ns. The ability of dummynet emulating the

bandwidth depends on the system tick interrupt, which is set to a

period of 10ms on PC type h/w. All the dispatching of the packet

has been done when the tick handler function is called. This may

result of a packet burst up to 25packets per 10ms, creating a

dummynet bottleneck of 10 Mbps and 4000 packets.

5 RESULTS

5.1 Arrival Rate of Packets

Figure 3: Arrival rate of Packets

The arrival rate is calculated by culminating the size of packets

arriving during a time at the input of the bottleneck queue. The

average has been obtained by calculating mean for total time

intervals. The value gives us rough information about the

bottleneck load for web services.

The rates in measured and simulated environments are very

similar but have a reproducible difference. While the medium load

scenarios ranging from 80 to 300 users expose a higher rate for

measured environment. This situation takes a reverse turn for

higher load scenarios. The arrival rate is a metric for the load on

the bottleneck link, it can be concluded that both scenarios impose

an equal demand on the bottleneck.

5.2 Response Time and Throughput

Figure 4: Response Time

The response time for web service is the time delay observed from

when a client invokes a remote web service until it receives the

last byte of response produced by the service. After looking at the

results from data analysis point of view it seems that there is no

difference in the result, from network point of view. The response

time in hosted environment follows the simulation behavior up to

300 users. After that response time for hosted environments

crosses the simulation.

The number of active flows increases in dependence on the

number of users. In the simulation, traffic generation model has a

weak dependence on the capacity bottleneck for low load

scenarios and the traffic amount is basically only dependent on

the number of virtual users. The higher queue size in

measurement in the high load scenarios can be explained by a

higher variance of traffic arriving at the bottleneck. Due to higher

mean queue size in hosted environments, a higher proportion of

packets are dropped, causing the TCP sender to reduce the

sending rate. This is why a considerable higher response time in

hosted environments is observed.

The throughput is the number of active requests processed by the

environments given per unit time. The trend for hosted

environment and simulation continues as the same. Hosted

environments show a comparable throughput for medium size

packets, and falls below simulation for large size packets. But not

considering the bottlenecks of the network the results can be

considered equal.

C R R S

International Journal of Computer Applications (0975 – 8887)

Volume 11– No.5, December 2010

23

Figure 5: Throughput

6. CONCLUSION
Web Services are chosen in terms of in terms of interoperability,

simplicity, flexibility and reuse of services. Efforts are going on to

reduce the performance limitations of Web services. This paper

summarizes the performance bottlenecks for Web Services.

In order to get true feeling before implementation, it is useful if

some trends are available. This paper presents the comparison of

few Web Services performance parameters in the simulated and

hosted environments. Since simulation and actual hosted

environments show similar results, web services can be first

simulated and tested before actually putting them on the web.

7. REFERENCES
[1] Menasce, D.A., Almeida, V.A.F.Dowdy, L.W (2004).

Performance by Design: Computer Capacity Planning by

Example. Prentice Hall, 2004

[2] Shahram Ghandeharizadeh, Christos Papadopoulos, Parikshit

Pol, Runfang Zhou. NAM:A Network Adaptable Middleware

to Enhance Response Time of Web Services. In proceedings

of the IEEE/ACM International symposium on Modelling,

Analysis and Simulation of Computer Telecommunications

Systems.

[3] Osama Hamad, Nedal Kafri. Performance Prediction of web

based Application Architecture Case Study: .Net vs JavaEE.

International journal of Web Applications,

Vol1,Number3,146-155

[4] Aniruddha S. Gokhle, Douglous C.Schmidt, Measuring and

optimizing CORBA latency and Scalability over high Speed

Networks.IEEE Transactions on Computers,

Vol.47,No.4,April 1998

[5] V. Almeida, J.Almeida, and C.Murta.Performance analysis of

a WWW Server. Technical Report 1996-018, Computer

Science Department, Boston University and UFMG. Aug.

1996

[6] Eduard Hasenleithner Thomas Ziegler. Comparision of

Simulation and measurement using state of art web traffic

models. In proceedings of the Eigth IEEE International

Symposium on Computers and Communication(ISCC‟03)

[7] R.van der Mei, R. Hariharan, and P. Reeseer. Web Server

performance modeling. Telecommunication systems, 16(3-

4):316-378, 2001

[8] P.Badford and M. Crovella. Generating representative web

workloads for network and server performance evaluation. In

proceedings of the ACM SIGMETRICS conference,

Madison, WI, July 1998

[9] Lisa Wells, Soren Christensen, Lars M. Cristensen, and Kjed

H. Mortensen. Simulation Based Performance Analysis of

Web Servers. In Proceedings of the 9th International

Workshop on Petri Nets and Performance Models

(PNPM‟01), 2001

[10] Matjaz B. Bostjan Kezmah, Marjan Hericko, Ivon Rozman,

Ivan Vezocnik. Java RMI, RMI Tunneling and Web Services

Comparision and Performance Analysis. ACM SIGPLAN

,58-65, Vol.39(5), May 2004

[11] M. Cai, S. Ghandehrizadeh, R. Schmidt, and S. Song. A

Comparison of Alternative Encoding Mechanisms for Web

Services. In proceedings of DEXA Conference, August 2002

[12] Govindaraju, M. Slominiski, A. Chiu, K. Liu, P.etc.

Characterizing the Performance of SOAP toolkits. In

proceedings of the 5th IEEE/ACM International Workshop

on Grid Computing. Pittsburg, U SA, 2004,365-372

[13] Nathan Meyers, Java Programming on Linux, Macmillan

Publishing, 1999

[14] M.Artit and C.Williamson. Internet Web Servers: Work Load

Characterization and Performance Implications,IEEE

Transactions on Networking,5(5):661-645,1997

[15] Davis, D. and Parashar, M. Latency Performance of SOAP

Implementations. In the proceedings of the 2nd IEEE/ACM

International symposium on Cluster Computing and Grid

Computing(CCGRID).Berlin, Germany,2002,785-790

[16] Simon E. Spero. Analysis of HTTP performance problems

[17] Ng,A. Chen, S. and Greenfield, P. Evaluation of

Contemporary Commercial SOAP. In proceedings of the 5th

Australian Workshop on Software and System Architectures

(AWSA), Melbourne, Australia, 2003, 64-71

[18] Ana C. C. Machado. Carlos A. G. Ferraz. Guidelines for

Performance Evaluation of Web Services. WebMedia‟05,

December 5-7, 2005, Pocos de Caldas, MG, Brazil

[19] F.Cohen, “Discover SOAP encoding‟s impact on Web

Service Performance”, http://www.128.ibm.com/

developerworks/webservices/library/ws-soapenc/

[20] T.Bell, J.Cleary, and I.Witten. Text Compression. Chapter 1,

Prentice Hall, Englewood Cliffs, NJ,1990.

