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ABSTRACT 

Specification mining is a dynamic analysis process aimed at 

automatically inferring suggested specifications of a program from 

its execution traces. In software development it would be 

preferable if all programs and software projects are developed 

with clear, precise and documented specifications. But due to hard 

deadlines and `short-time-to-market' requirement, software 

products often come with project oriented, incomplete and even 

without any documented specifications. This situation is further 

motivated by a phenomenon termed as software evolution. As 

software evolves the documented specification is often not 

updated. This might render the original documented specification 

of little use after several cycles of program evolution. The above 

factors have contributed to high software maintenance costs. In 

this paper a novel technique to efficiently mine software 

specifications, called TM_TraceMiner is proposed which mines 

software specifications from program execution traces. To address 

the limitations of Apriori-like methods and FP-growth methods, a 

mining paradigm has been proposed, which uses Transaction 

Mapping algorithm.  
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1. INTRODUCTION 
Specifications mining first proposed by Ammons et al [1] has 

received intensive research due to its wide range of applicability 

in many real life domains. They mine specifications from program 

execution traces. Let a program execution trace be a sequence of 

method calls to an application interface API [2,3]. Given a set of 

program execution traces, a small portion might be erroneous. The 

specification miner infers sequencing of constraints among the 

method calls. A trace might only be different to another due to 

different numbers of loop iterations during program execution. 

Given a database containing specifications, specification mining is 

a task of identifying specifications that satisfy a minimum support 

[4].  

Mining specifications can be done by using Association rule 

mining. Association rules mining is a very popular data mining 

techniques and it finds relationships among the different entities 

of records (for example specifications records). Since the 

introduction in 1993 by Agrawal et al.[5], it has received a great 

deal of attention in the field of knowledge discovery and data 

mining. The problem of association rules mining was introduced 

in [5] and was improved to obtain the Apriori algorithm in [6]. 

The Apriori algorithm employs the downward closure property- if 

an itemset is not frequent, any superset of it cannot be frequent 

either. The Apriori algorithm performs a breadth-first search in 

the search space. TraceMiner is an Apriori based method which 

mines software specifications from program execution traces by 

employing a search lattice and search tree to store the execution 

trace data sets [7]. 

FP-growth is a well known algorithm that uses FP-tree data 

structure to achieve a condensed representation of the data base 

transactions and employs a divide-and-conquer approach to 

decompose the mining problem into a set of smaller problems [8].  

FP-TraceMiner [9] is a FP-growth based method which mines all 

the frequent execution traces by recursively finding all frequent 

traces from the trace database. In FP-growth based algorithms, 

recursive construction of the FP-tree affects the algorithm’s 

performance.  In this paper, a novel approach that maps and 

compresses the transaction id list of each item (trace) into an 

interval list using a transaction tree and counts the support of each 

item (trace) by intersecting these interval lists. The frequent traces 

are found in a depth-first order along a lexicographic tree. The 

basic idea is to save the intersection time by mapping trace ids 

into continuous trace intervals. The rest of the paper is arranged as 

follows:  Section 2 introduces the basic concept of association 

rules mining, two types of data representation, and the 

lexicographic tree used in the proposed algorithm. Section 3 

addresses the TM-TraceMiner algorithm. Section 4 compares the 

TM-TraceMiner with two other algorithms-TraceMiner and FP-

TraceMiner. Section 5 concludes the paper. 

2. BASIC PRINCIPLES 

2.1 Association Rules Mining 
Let I={e1,e2,…,em} be a set of events and TD be a database 

having a set of traces where each trace T is a sub set of I. An 

association rule is an association relationship of the form: X=>Y, 

where X is a subset of I, Y is a subset of I and X ∩ Y = Ø. The 

support of rule X => Y is defined as the percentage of traces 

containing both X and Y in TD. The confidence of X => Y is 

defined as the percentage of traces containing X that also contain 

Y in TD. The task of association rules mining is to find all strong 

association rules that satisfy a minimum support threshold (min-

sup) and a minimum confidence threshold (min-conf). Mining 

association rules consists of two phases. In the first phase, all 

frequent traces that satisfy the min-sup are found. In the second 

phase, strong association rules are generated from the frequent 

traces found in the first phase. Most research considers only the 
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first phase because once frequent traces are found, mining 

association rules is trivial.  

 

2.2 Data Representation 
Two types of database layouts are employed in association rule 

mining: horizontal and vertical. In the horizontal database layout, 

each trace consists of a set of events and the database contains a 

set of traces. Most Apriori-like algorithms use this type of layout. 

For vertical database layout, each event maintains a set of trace 

ids (denoted by tr-id-set) where this event is contained. This 

layout could be maintained as a bit vector. It has been shown that 

vertical layout performs generally better than the horizontal 

format [10,11]. Table 1, Table 2 and Table 3 show examples for 

different types of layouts. 

 

Table 1. Horizontal Representation 

Tr-id Traces 

1 <2,1,5,3> 

2 <2,3> 

3 <1,4> 

4 <3,1,5> 

5 <2,1,3> 

6 <2,4> 

 

Table 2 Vertical Tr-id-set Representation 

Trace Tr-id-set 

1 <1,3,4,5> 

2 <1,2,5,6> 

3 <1,2,4,5> 

4 <3> 

5 <1,4> 

 

Table 3 Vertical Bitvector Representation 

Trace Bitvector 

1 <1,0,1,1,1,0> 

2 <1,1,0,0,1,1> 

3 <1,1,0,1,1,0> 

4 <0,0,1,0,0,0> 

5 <1,0,0,1,0,0> 

 

2.3 Lexicographic Prefix Tree 
  In this paper, a lexicographic prefix tree data structure is 

employed to generate candidate trace sets and count their 

frequency, which is similar to the lexicographic tree used in the 

TreeProjection algorithm [12]. An example of this tree is shown 

in Fig. 1. Each node in the tree stores a collection of frequent 

trace sets together with the support of these trace sets. The root 

contains all frequent 1-trace sets. Each edge in the tree is labeled 

with a trace event. Trace sets in any node are stored as singleton 

sets with the understanding that the actual trace set also contains 

all the events found on the edges from this node to the root node. 

For example consider the leftmost node in level 2 of the tree in 

Fig. 1. There are four 2-trace sets in this node, namely 

{1,2},{1,3},{1,4} and {1,5}. The singleton sets in each node of 

the tree are stored in the lexicographic order. If the root contains 

{1},{2},…,{n}, then, the nodes in level 2 will contain 

{2},{3},…{n};{3},{4},…,{n};…;{n}, and so on. For each 

candidate trace set a list of transaction ids are stored. This tree 

will not be generated in full. The tree is generated in depth-first 

order and minimum information needed to continue the search 

only stored. This means that at any instance, at most a path of the 

tree will be stored. As the search progresses, if the expansion of a 

node cannot possibly lead to the discovery of trace sets that have 

minimum support, then the node will not be expanded and the 

search will backtrack. As a frequent trace set that meets the 

minimum support requirement is found, it is output. Candidate 

traces sets generated by depth-first search are the same as those 

generated by the joining step (without pruning) of the Apriori 

algorithm. 
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Table 4. A Sample Trace Database 

 

 

 
 

 

 
 

 

 

 

 

 

3. TRANSACTION MAPPING 

ALGORITHM    
The contribution is that transaction ids are compressed for each 

trace set to continuous intervals by mapping trace ids into 

different space appealing to a transaction tree. Frequent trace sets 

are found by intersecting these interval lists instead of intersecting 

the trace id lists. The construction of transaction tree [15] is as 

follows. 

3.1 Transaction Tree 
The transaction tree is similar to FP-tree except that there is no 

header table or node link. The transaction tree can be thought of 

as a compact representation of all the transactions in the database. 

Each node in the tree has an id corresponding to an event and a 

counter that keeps the number of transactions that contain this 

event in this path. The construction of the transaction tree is as 

follows: 

1. Scan through the trace database once and identify all the 

frequent 1- trace sets and sort them in descending order 

of frequency. At the beginning, the transaction tree 

consists of just a single node (which is a dummy root). 

2. Scan through the trace database for a second time. For 

each trace, select items that are in frequent 1-trace sets, 

sort them according to the order of frequent 1-trace sets, 

and insert them into the transaction tree. When inserting 

an event, start from the root. At the beginning, the root 

is the current node. In general, if the current node has a 

child node whose id is equal to this event, then just 

increment the count of this child by 1; otherwise, create 

a new child node and set its counter as 1.  

 

Table 4 and Fig. 2 illustrate the construction of a transaction tree. 

Table 4 shows an example of a trace database and Fig. 2 displays 

the constructed transaction tree assuming the minimum support 

count is 2. 

3.2 Transaction Mapping and the 

Construction of Interval lists 
After the transaction tree is constructed, all the transactions that 

contain an item are represented with an interval list. Each interval 

corresponds to a contiguous sequence of relabeled ids. Each node 

in the transaction tree will be associated with an interval. The 

construction of interval lists for each event is done recursively 

starting from the root in a depth-first order. In addition to the 

events, each element of a node in the lexicographic tree also stores 

a trace interval list. By constructing the lexicographic tree in a 

depth-first order, the support count of the candidate trace set is 

computed by intersecting the interval lists of the two events. 

3.3 Transaction Mapping-TraceMiner 

Algorithm (TM-TraceMiner) 
There are four steps involved in this algorithm: 

1. Scan through the trace database and identify all 

frequent-1 trace sets. 

2. Construct the transaction tree with counts for each node. 

3. Construct the transaction interval lists. Merge intervals 

if they are mergeable. 

4. Construct the lexicographic tree in a depth-first order 

keeping only the minimum amount of information 

necessary to complete the search. This means that no 

more than a path in the lexicographic tree will ever be 

stored. While, at any node, if further expansion of that 

will not be fruitful, then the search backtracks. When 

processing a node in the tree for every element in the 

node, the corresponding interval lists are computed by 

interval intersections. As the search progresses, trace set 

with enough support is output.     

4. EXPERIMENTS AND PERFORMANCE 

EVALUATION  

4.1 Comparison with TraceMiner and FP-

TraceMiner 
Experiments had been performed on both synthetic and real 

datasets to evaluate the scalability of our mining algorithm and the 

effectiveness of our pruning strategy. Three datasets are used in 

these experiments: a synthetic and two real datasets. Synthetic 

data generator provided by IBM was used with modification to 

ensure generation of sequences of events. The generators accept a 

set of parameters. The parameters D, C, N and S correspond 

Tr-id Traces Ordered frequent traces 

1 <2,1,5,3,19,20> <1,2,3> 

2 <2,6,3> <2,3> 

3 <1,7,8> <1> 

4 <3,1,9,10> <1,3> 

5 <2,1,11,3,17,18

> 

<1,2,3> 

6 <2,4,12> <2,4> 

7 <1,13,14> <1> 

8 <2,15,4,16> <2,4> 

root 

1:5 

[1,5] 

2:3 

[6,8] 

 

2:2 

[1,2] 

3:1 

[3,3] 

3:1 

[6,6] 

4:2 

[7,8] 

3:2 

[1,2] 

Fig. 2. A transaction tree for the database shown in 

Table 4 
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respectively to the number of sequences (in 1000s), the average 

number of events per sequence, the number of different events (in 

1000s) and the average number of events in the maximal 

sequences. The experiment is tested with the dataset 

D5C20N10S20. It is also experimented on Gazelle dataset from 

KDD Cup 2000 which was also used to evaluate TraceMiner and 

FP-TraceMiner. It contains 29369 sequences with an average 

length of 3 and a maximum length of 651. 

To evaluate this algorithm performance on mining from program 

traces, we generate traces from a simple Traffic alert and Collision 

Avoidance System (TCAS) from the Siemens Test Suite [13], 

which has been used as one of the benchmarks for research in 

error localization [14]. The test suite comes with 1578 correct test 

cases. We run these test cases to obtain 1578 traces. To test for 

scalability, instead of tracing method invocations, we trace 

executions of basic blocks of TCAS's control flow graph. A basic 

block is a maximal sequence of statements such that the execution 

of one statement will always results in the execution of the 

subsequent statements in the sequence. Each trace of basic block 

ids is treated as a sequence. The sequences are of average length 

of 36 and maximum length of 70. It contains 75 different events - 

the events are the basic block ids of the control flow graph of 

TCAS as shown in Table 5. This dataset is called as TCAS 

dataset. 

Environment and Pattern Miners: All experiments were 

performed on a Pentium 4 3.0GHz PC with 2GB main memory 

running Windows XP Professional. Algorithms were written 

using Java running with Net Beans Frame work.  

 

Table 5. Performance details of TM-TraceMiner 

 

Experiment Results and Analysis: The results of experiments 

performed on the D5C20N10S20, Gazelle and Siemens dataset 

using closed and full-set iterative pattern miners are shown in 

Figures 3, 4 & 5 respectively. The Y-axis (in log scale) 

corresponds to the runtime taken or the number of generated 

patterns. The X-axis corresponds to the minimum support 

thresholds. The thresholds are reported relative to the number of 

sequences in the database. Note that, different from sequential 

patterns, due to repeated patterns within a sequence this number 

can exceed 1 

 

 

 

Fig 3: Performance results of varying min_ sup for 

D5C20N10S20 dataset 
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Fig. 4: Performance results of varying min_ sup for Gazelle 

dataset 

 

Fig 5: Performance results of varying min sup for TCAS 

dataset 

From the plotted results it is noted that the pruning strategy 

significantly reduces the runtime and the number of patterns 

mined especially on low support threshold and when the reported 

patterns are long. Admittedly, when the numbers of closed and 

full-set of patterns differ by only a small factor, the overhead of 

mining using TraceMiner may result in longer runtime as 

compared to mining a FP-TraceMiner. However, when the length 

of the patterns is long, the number of TraceMiner is likely to be 

much less than that of a FP-TraceMiner. 

 

For all datasets, even at very low support, TraceMiner is able to 

complete within less than 17 minutes. TCAS dataset especially 

highlights performance benefit of our pruning strategy. TM-

TraceMiner is able to run even at the lowest possible support 

threshold (at 1 instance) within less than 17 minutes. On the other 

hand, Fp-TraceMiner runs with excessive runtime (> 6 hours) 

even at a relatively high support threshold of 867 instances. But 

TM-TraceMiner runs within 25 minutes. 

 

5. CONCLUSION 
In this paper, a new algorithm TM-TraceMiner is presented using 

the vertical database representation. Trace ids of each trace set are 

transformed and compressed to continuous transaction interval 

lists in a different space using transaction tree and frequent trace 

sets are found by transaction intervals intersection along a 

lexicographic tree in depth-first order. Through experiments the 

TM-TraceMiner algorithm has been shown gain to significant 

performance improvement over TraceMiner and FP-TraceMiner. 

This paper also gives an efficient method to mine the 

specifications from program execution traces. Traces deviating 

from common trace population rules are removed. The resultant 

filtered traces are then separated into multiple clusters. By 

clustering common traces together, it is expected that the learner 

is able to learn better and over-generalization of a subset of traces 

is not propagated to other clusters. These clusters of filtered traces 

are then inputted to a specification miner. This algorithm confirms 

the usefulness of the proposed method in discovering software 

specifications in iterative pattern form. Besides mining software 

behavioral pattern, it is believed that the proposed mining 

technique can potentially be applied to other knowledge discovery 

domains 
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