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ABSTRACT 
The objective of this paper is to evaluate a set of wavelets for 

image compression. Image compression using wavelet transforms 

results in an improved compression ratio. Wavelet transformation 

is the technique that provides both spatial and frequency domain 

information. These properties of wavelet transform greatly help in 

identification and selection of significant and non-significant 

coefficients amongst the wavelet coefficients. DWT (Discrete 

Wavelet Transform) represents image as a sum of wavelet 

function (wavelets) on different resolution levels. So, the basis of 

wavelet transform can be composed of function that satisfies 

requirements of multiresolution analysis. The choice of wavelet 

function for image compression depends on the image application 

and the content of image. A review of the fundamentals of image 

compression based on wavelet is given here. This study also 

discussed important features of wavelet transform in compression 

of images. In this study we have evaluated and compared three 

different wavelet families i.e. Daubechies, Coiflets, Biorthogonal. 

Image quality is measured, objectively using peak signal-to-noise 

ratio, Compression Ratio and subjectively using visual image 

quality.  

Keywords 
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1. INTRODUCTION 
The rapid development of high performance computing and 

communication has opened up tremendous opportunities for 

various computer-based applications with image and video 

communication capability. However, the amount of data required 

to store a digital image is continually increasing and 

overwhelming the storage devices. The data compression 

becomes the only solution to overcome this. Image compression 

is the representation of an image in digital form with as few bits 

as possible while maintaining an acceptable level of image 

quality [1]. A typical still image contains a large amount of 

spatial redundancy in plain areas where adjacent picture elements 

i.e. the pixels have almost the same values. It means that the 

picture elements are highly correlated. The redundancy can be 

removed to achieve compression of the image data i.e., the 

fundamental components of compression are redundancy and 

irrelevancy reduction. The basic measure of the performance of a 

compression algorithm is the compression ratio, which is defined 

by the ratio between original data size and compressed data size. 

Higher compression ratios will produce lower image quality and 

the vice versa is also true.  

 

Current standards for compression of images use DCT [2-4], 

which represent an image as a superposition of cosine functions 

with different discrete frequencies.  The transformed signal is a 

function of two spatial dimensions and its components are called 

DCT coefficients or spatial frequencies. DCT coefficients 

measure the contribution of the cosine functions at different 

discrete frequencies. DCT provides excellent energy compaction 

and a number of fast algorithms exist for calculating the DCT. 

Most existing compression systems use square DCT blocks of 

regular size. The image is divided into blocks of samples and 

each block is transformed independently to give coefficients. To 

achieve the compression, DCT coefficients should be quantized. 

The quantization results in loss of information, but also in 

compression. Increasing the quantizer scale leads to coarser 

quantization, gives high compression and poor decoded image 

quality. The use of uniformly sized blocks simplified the 

compression system, but it does not take into account the 

irregular shapes within real images. The block-based 

segmentation of source image is a fundamental limitation of the 

DCT-based compression system. The degradation is known as 

the "blocking effect" and depends on block size. A larger block 

leads to more efficient coding, but requires more computational 

power. Image distortion is less annoying for small than for large 

DCT blocks, but coding efficiency tends to suffer. Therefore, 

most existing systems use blocks of 8X8 or 16X16 pixels as a 

compromise between coding efficiency and image quality.  

Wavelets provide good compression ratios, especially for high 

resolution images. Wavelets perform much better than competing 

technologies like JPEG 10 both in terms of signal-to-noise ratio 

and visual quality. Unlike JPEG, it shows no blocking effect but 

allow for a graceful degradation of the whole image quality, 

while preserving the important details of the image. The next 

version of the JPEG standard i.e. JPEG 2000 will incorporate 

wavelet based compression techniques. In a wavelet compression 

system, the entire image is transformed and compressed as a 

single data object rather than block by block as in a DCT-based 

compression system. It allows a uniform distribution of 

compression error across the entire image. It can provide better 

image quality than DCT, especially on a higher compression 

ratio. However, the implementation of the DCT is less expensive 

than that of the DWT. For example, the most efficient algorithm 

for 2-D 8X8 DCT requires only 54 multiplications, while the 

complexity of calculating the DWT depends on the length of 

wavelet filters. A wavelet image compression system can be 

consists of wavelet function, quantizer and an encoder. In our 

study, we used various wavelets for image compression on image 

test set and then evaluate and compare the wavelets. According 

to this analysis, we show the choice of the wavelet for image 

compression taking into account objective image quality 

measures [5]. 
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2.  WAVELET TRANSFORM 
The signal is defined by a function of one variable or many 

variables. Any function is represented with the help of basis 

function. An impulse is used as the basis function in the time 

domain. Any function can be represented in time as a summation 

of various scaled and shifted impulses. Similarly the sine function 

is used as the basis in the frequency domain. However these two-

basis functions have their individual weaknesses: an impulse is 

not localized in the frequency domain, and is thus a poor basis 

function to represent frequency information. Likewise a sine 

wave is not localized in the time domain [6]. In order to represent 

complex signals efficiently, a basis function should be localized 

in both time and frequency domains. The support of such a basis 

function should be variable, so that a narrow version of the 

function can be used to represent the high frequency components 

of a signal while wide version of the function can be used to 

represent the low frequency components. Wavelets satisfy the 

conditions to be qualified as the basis functions. 

Sinusoidal wave is one of the popular waves, which extend from -

∞ to +∞. Sinusoidal signals are smooth and predictable; it is the 

basis function of Fourier analysis. Fourier analysis consists of 

breaking up a signal into sine and cosine waves of various 

frequencies. A wavelet is waveform of limited duration that has 

an average value of zero. Wavelets are localized waves and they 

extend not from -∞ to +∞ but only for finite time duration, as 

shown in Fig. 2. A wavelet is a waveform of effectively limited 

duration that has an average value of zero. Compare wavelets 

with sine waves, which are the basis of Fourier analysis. 

Sinusoids do not have limited duration -- they extend from minus 

to plus infinity. And where sinusoids are smooth and predictable, 

wavelets tend to be irregular and asymmetric. 

Fourier analysis consists of breaking up a signal into sine waves 

of various frequencies. Similarly, wavelet analysis is the breaking 

up of a signal into shifted and scaled versions of the original (or 

mother) wavelet. Just looking at pictures of wavelets and sine 

waves, we can see intuitively that signals with sharp changes 

might be better analyzed with an irregular wavelet than with a 

smooth sinusoid, just as some foods are better handled with a fork 

than a spoon. 

It also makes sense that local features can be described better 

with wavelets that have local extent. 

 

(a) A Wave 

 

(b) Wavelet 

Figure 2.1 (a) A wave (b) Wavelet 

The wavelet as shown in Fig. 2.1. is a mother wavelet (h (t)). The 

mother wavelet and its scaled daughter functions are used as a 

basis for a new transform. 

Unfortunately, if h(t) is centered around t = 0, with extension 

between – T and + T, no matter how many daughter wavelets we 

use, it will not be possible to properly represent any point at t >T 

of a signal s(t). For the case using a localized wave or wavelet, it 

must be possible to shift the center location of the function. In 

other words, it must include a shift parameter, b, and the daughter 

wavelets should be defined as 

The reason for choosing the factor in the above equation is to 

keep the energy of the daughter wavelets constant. 
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3. WAVELET TRANSFORM VERSES 

FOURIER TRANSFORM 

3.1 Time Frequency Resolution 
In the well-known Fourier analysis, a signal is broken down into 

constituent sinusoids of different frequencies. These sines and 

cosines (essentially complex exponentials) are the basis functions 

and the elements of Fourier synthesis. Taking the Fourier transform 

of a signal can be viewed as a rotation in the function space of the 

signal from the time domain to the frequency domain. Similarly, the 

wavelet transform can be viewed as transforming the signal from the 

time domain to the wavelet domain. This new domain contains more 

complicated basis functions called wavelets, mother wavelets or 

analyzing wavelets. 

A major drawback of Fourier analysis is that in transforming to the 

frequency domain, the time domain information is lost. When 

looking at the Fourier transform of a signal, it is impossible to tell 

when a particular event took place. In an effort to correct this 

deficiency, Dennis Gabor (1946) adapted the Fourier transform to 

analyze only a small section of the signal at a time. a technique 

called windowing the signal [14]. Gabor.s adaptation, called the 

Windowed Fourier Transform (WFT) gives information about 

signals simultaneously in the time domain and in the frequency 

domain To illustrate the time-frequency resolution differences 

between the Fourier transform and the wavelet transform consider 

the following figures. 
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Figure  3.1  WFT Resolution 

 

Figure 3.1 shows a windowed Fourier transform, where the 

window is simply a square wave. The square wave window 

truncates the sine or cosine function to fit a window of a 

particular width. Because a single window is used for all 

frequencies in the WFT, the resolution of the analysis is the same 

at all locations in the time frequency plane. An advantage of 

wavelet transforms is that the windows vary. Wavelet analysis 

allows the use of long time intervals where we want more precise 

low-frequency information, and shorter regions where we want 

high-frequency information. A way to achieve this is to have 

short high-frequency basis functions and long low-frequency 

ones. 

F
re
q
u
en
cy
 

 

Time 

Figure 3.2  Wavelet Transform 

Figure 3.2 shows a time-scale view for wavelet analysis rather 

than a time frequency region. Scale is inversely related to 

frequency. A low-scale compressed wavelet with rapidly 

changing details corresponds to a high frequency. A high-scale 

stretched wavelet that is slowly changing has a low frequency 

application. 

 

4. WAVELET FAMILIES 

4.1 Biorthogonal Wavelets 
This family of wavelets exhibits the property of linear phase, 

which is needed for signal and image reconstruction. By using 

two wavelets, one for decomposition (on the left side) and the 

other for reconstruction (on the right side) instead of the same 

single one, interesting properties are derived. 

 

  
 

Figure 4.1 Biorthogonal wavelet Families 

 

4.2 Coiflets Wavelets 
 The wavelet function has 2N moments equal to 0 and the scaling 

function has 2N-1 moments equal to 0. The two functions have a 

support of length 6N-1.  

 

  

  
Figure 4.2 Coiflets Wavelet Families 
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4.3 Daubechies Wavelets 
Ingrid Daubechies, one of the brightest stars in the world of 

wavelet research, invented what are called compactly supported 

orthonormal wavelets — thus making discrete wavelet analysis 

practicable.The names of the Daubechies family wavelets are 

written dbN, where N is the order, and db the “surname” of the 

wavelet. The db1 wavelet, as mentioned above, is the same as 

Haar wavelet. Here is the wavelet functions psi of the next nine 

members of the family: 

 

   

   

   
Figure 4.3 Daubechies Wavelet Families 

 

5. DISCRETE WAVELET TRANSFORM 
The transform based coding techniques work by statistically de-

correlating the information contained in the image so that the 

redundant data can be discarded [5]. Therefore a "dense" signal is 

converted to a "sparse" signal and most of the information is 

concentrated on a few significant coefficients. The greatest 

problem associated with the transform coding techniques such as 

DCT based image compression [6-8] is the presence of visually 

annoying "blocking artifact" in the compressed image. This has 

caused an inclination towards the use of Discrete Wavelet 

Transform (DWT) for all image and video compression 

standards. DWT offers adaptive spatial-frequency resolution 

(better spatial resolution at high frequencies and better frequency 

resolution at low frequencies).In present scene, much of the 

research works in image compression have been done on the 

Discrete Wavelet Transform. DWT now becomes a standard tool 

in image compression applications because of their data reduction 

capabilities. The basis of Discrete Cosine Transform (DCT) is 

cosine functions while the basis of Discrete Wavelet Transform 

(DWT) is wavelet function that satisfies requirement of multi-

resolution analysis [9]. Discrete wavelet transform have certain 

properties that makes it better choice for image compression. It is 

especially suitable for images having higher resolution. DWT 

represents image on different resolution level i.e., it possesses the 

property of Multi-resolution. Since, DWT can provide higher 

compression ratios with better image quality due to higher de-

correlation property. Therefore, DWT has potentiality for good 

representation of image with fewer coefficients. DWT Converts 

an input series x0, x1,xm, into one high-pass wavelet coefficient 

series and one low-pass wavelet coefficient series (of length n/2 

each) given by: 

( )zsxH m

k

m mi .
1

0 21 ∑
−

= −=  

( )ztxL m

k

m mi .
1

0 21 ∑
−

= −=  

Where Sm (Z) and tm (Z) are called wavelet filters, K is the 

length of the filter, and i=0, [n/2]-1.  

In practice, such transformation will be applied recursively on the 

low-pass series until the desired number of iterations is reached. 

 

Figure. 5.1   Filter Iteration Series 

 

6.  IMAGE COMPRESSION USING 2D-

DWT 
 

A wavelet image compression system can be created by selecting 

a type of wavelet function, quantizer, and statistical coder. In this 

paper, we do not intend to give a technical description of a 

wavelet image compression system. We used a few general types 

of wavelets and compared the effects of wavelet analysis and 

representation, compression ratio, image content, and resolution 

to image quality [10]. According to this analysis, we show that 

searching for the optimal wavelet needs to be done taking into 

account not only objective picture quality measures, but also 

subjective measures. We highlight the performance gain of the 

DWT over the DCT. 

The choice of wavelet function is crucial for performance in 

image compression. There are a number of basis that decides the 

choice of wavelet for image compression. Since the wavelet 

produces all wavelet functions used in the transformation through 

translation and scaling, it determines the characteristics of the 

resulting wavelet transform [11]. Therefore, the details of the 

particular application should be taken into account and the 

appropriate wavelet should be chosen in order to use the wavelet 

transform effectively for image compression. The compression 

performance for images with different spectral activity will 

decides the wavelet function from wavelet family. In our 

experiment multiple wavelet functions of wavelet families are 

examined namely: Daubechies, bior, & Coiflet.Daubechies 

wavelets are the most popular wavelets. Biorthogonal wavelets, 

exhibits the property of linear phase, which is needed for signal 

and image reconstruction. Coiflets are discrete wavelets designed 

by Ingrid Daubechies.The wavelet is near symmetric their 

wavelet functions have N\3 vanishing moments. The coif N and 

are much more symmetrical than the dbNs where N is the order of 

family. By using two wavelets, one for decomposition and the 

other for reconstruction. This property is used, connected with 

sampling problems, when calculating the difference between an 

expansion over the  of a given signal and its sampled version 

instead of the same single one, interesting properties can be 

derived A major disadvantage of these wavelets is their 

asymmetry, which can cause artifacts at borders of the wavelet 

High Pass 

Low Pass 

f 
G

H G
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sub bands. The wavelets are chosen based on their shape and their 

ability to compress the image in a particular application [12]. 

6.1 Wavelet Decomposition 

The composition process can be iterated with successive 

approximations being decomposed in turn, so that one signal is 

broken down into many lower resolution components. This is 

called multiple-level wavelet decomposition. 

 

Figure 6.1 Decomposition Tree 

 

7. PERFORMANCE EVALUATION 

METHODOLOGY 
The performance of image compression techniques are mainly 

evaluated by the two measures: Compression Ratio (CR) and the 

magnitude of error introduced by the encoding.  

The compression ratio is defined as: 

imagecompressedtheinbitsofnumberThe

imageoriginaltheinbitsofnumberThe
CR=  

For error evaluation, two error metrics are used to compare the 

various image compression techniques: Mean Square Error 

(MSE) and the Signal to Noise Ratio (SNR). SNR is used to 

measure the difference between two images. In order to 

quantitatively evaluate the quality of the compressed image the 

Signal-to-Noise Ratios (SNR) of the images are computed. SNR 

provides a measurement of the amount of distortion in a signal 

[4], with a higher value indicating less distortion. For n-bits per 

pixel image, SNR is defined as [13]: 

MSE
SNR

n2
log20 10=  

 

8. EXPERIMENT RESULTS & 

DISCUSSIONS 

8.1 Image Compression Using DWT 

In this study, we have examined three types of wavelet families: 

Daubechies Wavelet, Coiflet Wavelet, and Biorthogonal Wavelet. 

We have analyzed three different test images: Cell (159X191), 

Pout (291X240), and Saturn (328X438). Results are measured in 

terms of Signal to Noise Ratio (SNR), Compression Ratio (CR) 

and visual quality of compressed image. The comparison of CR 

& SNR values of wavelets of each wavelet family for different 

test images shown in figures. Figure 8.1 shows the Compression 

Ratio & PSNR value of the cell image similarly Figure 8.2 & 

Figure 8.3 shows the value of CR & PSNR in case of pout and 

Saturn image. Table 1 shows the different values of CR, PSNR 

for biorthogonal & Coiflets & Daubechies Wavelet families for 

cell image. Similarly Table 2 & Table 3 contains the values of CR 

& PSNR for pout & Saturn image.Biorthogonal has Bior 1.1,bior 

1.3,bior 1.5,bior 2.2,bior 2.4,bior 2.6,bior 2.8,bior 3.1,bior 

3.3,bior 3.5,bior 3.7,bior 3.9,bior 4.4,bior 5.5 & bior 6.8 wavelet 

families & coiflets has coi 1,coi 2,coi 3,coi 4 & coi 5. Wavelet 

families also daubechies wavelet has db 1, db 2, db 4, db 5, db 6, 

db 8, db 10, db 15, db 16, db 32. 

 

 

Figure 8.1. SNR & CR of cell image for biorthogonal, Coiflets 

& Daubechies wavelet. 

 

 

Figure  8.2. SNR & CR of pout image for Biorthogonal 

Coiflets & Daubechies wavelet. 

 

 

 

Figure 8.3. SNR & CR of Saturn image for Biorthogonal, 

Coiflets & Daubechies Wavelet. 
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Table 1: Value of CR, PSNR & SNR OF “Cell IMAGE” USING different wavelet families 
S. 

No. 

Biorthogonal Coiflets Daubechies 

Wavelet CR PSNR SNR Wavelet CR PSNR SNR Wavelet CR PSNR SNR 

1 Bior 1.1 88.7588 33.4990 8.5140 Coi 1 89.7770 33.5960 8.6109 Db 01 88.7588 33.4990 8.5140 

2 Bior 1.3 88.8215 33.7365 8.7514 Coi 2 87.9276 33.5865 8.6014 Db 02 88.9964 33.5738 8.5887 

3 Bior 1.5 87.6750 33.6707 8.6856 Coi 3 85.5066 33.6689 8.6838 Db 04 87.7697 33.4578 8.4727 

4 Bior 2.2 88.3489 34.3007 9.3152 Coi 4 82.9440 33.5380 8.5529 Db 05 85.6539 33.4323 8.4473 

5 Bior 2.4 86.5733 34.3598 9.3743 Coi 5 80.8486 33.6334 8.6484 Db 06 84.7630 33.4262 8.4412 

6 Bior 2.6 85.9404 34.3915 9.4060     Db 08 81.7179 33.3267 8.3416 

7 Bior 2.8 83.4448 34.4005 9.4150     Db 10 77.3059 33.2089 8.2238 

8 Bior 3.1 80.7806 34.1836 9.1985     Db 15 70.2901 33.0034 8.0183 

9 Bior 3.3 84.0690 34.6726 9.6871     Db 16 68.4673 33.1058 8.1207 

10 Bior 3.5 82.6020 34.8046 9.8195     Db 32 52.6860 32.6773 7.6922 

11 Bior 3.7 82.9576 34.8186 9.8331         

12 Bior 3.9 77.7927 34.9769 9.9914         

13 Bior 4.4 90.0439 33.4339 8.4488         

14 Bior 5.5 91.3779 32.3524 7.3673         

15 Bior 6.8 86.4629 33.6316 8.6465         

 

Table 2: Value of CR, PSNR & SNR OF “Pout  IMAGE” USING different wavelet families 
S. 

No. 

Biorthogonal Coiflets Daubechies 

Wavelet CR PSNR SNR Wavelet CR PSNR SNR Wavelet CR PSNR SNR 

1 Bior 1.1 87.2825 33.9909 13.8298 Coi 1 87.6308 34.482 14.3210 Db 01 87.2825 33.9909 13.8298 

2 Bior 1.3 85.4161 34.4734 14.3124 Coi 2 85.8457 34.7469 14.5859 Db 02 88.0164 34.4902 14.3292 

3 Bior 1.5 83.7416 34.4565 14.2954 Coi 3 82.8216 34.7311 14.5701 Db 04 86.5505 34.5891 14.4280 

4 Bior 2.2 86.873 35.4591 15.2980 Coi 4 78.9678 34.7466 14.5855 Db 05 84.6591 34.561 14.4000 

5 Bior 2.4 84.5118 35.7131 15.5520 Coi 5 76.6118 34.7995 14.6385 Db 06 84.1412 34.5494 14.3883 

6 Bior 2.6 81.8908 35.8394 15.6784     Db 08 79.8481 34.4311 14.2701 

7 Bior 2.8 79.8618 35.9038 15.7428     Db 10 84.6591 34.561 14.4000 

8 Bior 3.1 82.6362 35.79 15.6290     Db 15 69.8004 34.3169 14.1559 

9 Bior 3.3 82.6989 36.4383 16.2773     Db 16 68.2089 34.3374 14.1763 

10 Bior 3.5 79.2208 36.6642 16.5032     Db 32 55.7206 34.0731 13.9120 

11 Bior 3.7 77.9105 36.6097 16.4487     Db45 13.6082 6.4504 -13.7107 

12 Bior 3.9 74.0749 36.8533 16.6923         

13 Bior 4.4 87.9082 34.3724 14.2113         

14 Bior 5.5 89.5795 33.1339 12.9729         

15 Bior 6.8 83.6676 34.8471 14.6860         

                              

 

Table 3: Value of CR, PSNR & SNR OF “Saturn IMAGE” USING different wavelet families 
S. 

No. 

Biorthogonal Coiflets Daubechies 

Wavelet CR PSNR SNR Wavelet CR PSNR SNR Wavelet CR PSNR SNR 

1 Bior 1.1 86.5844 35.4102 26.8064 Coi 1 90.5244 37.0456 28.1383 Db 01 86.5844 35.4102 26.8064 

2 Bior 1.3 86.8167 35.9786 27.3749 Coi 2 91.1516 37.0598 28.456 Db 02 90.3647 36.7295 28.1257 

3 Bior 1.5 86.7724 36.0021 27.3984 Coi 3 90.2038 37.1005 28.4968 Db 04 90.6163 36.884 28.2803 

4 Bior 2.2 90.5343 38.2953 29.6916 Coi 4 88.3692 37.101 28.5302 Db 05 90.3374 36.9242 28.3204 

5 Bior 2.4 90.2474 38.8694 30.2657 Coi 5 86.7603 37.1015 28.4978 Db 06 89.834 36.8352 28.2314 

6 Bior 2.6 89.466 39.0122 30.4085     Db 08 88.8889 36.8113 28.2075 

7 Bior 2.8 88.4124 39.1934 30.5896     Db 10 87.4486 36.6079 28.0042 

8 Bior 3.1 87.655 39.7006 31.0969     Db 15 84.8567 36.2541 27.6504 

9 Bior 3.3 88.4202 40.4314 31.8277     Db 16 84.0811 36.209 27.6052 

10 Bior 3.5 88.2056 40.8251 32.2213     Db 32 76.5657 35.5105 26.9067 

11 Bior 3.7 87.6074 40.9326 32.3289         

12 Bior 3.9 92.4471 36.4811 27.8774         

13 Bior 4.4 86.3357 41.0353 32.4316         

14 Bior 5.5 93.759 34.7608 26.1571         

15 Bior 6.8 90.5895 37.2343 28.6306         
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9. CONCLUSION 
Image Compression using DWT has various advantages over 

DCT [12-14].In case of image compression DWT no need to 

divide the input coding into non-overlapping 2-D blocks, it has 

higher compression ratios avoid blocking artifacts. Also allows 

good localization both in time and spatial frequency domain. 

Better identification of which data is relevant to human 

perception� higher compression ratio 

The discrete wavelet transform performs very well in the 

compression of image signals. The performance measure results 

are obtained using the Biorthogonal, Coiflets & Daubechies 

Wavelet Families on to three different images Cell (159X191), 

Pout (291X240) and Saturn (338X438). The Compression results 

are measured in terms of CR, SNR. The Experimental results are 

discussed here for all three images. 

CASE -1(Cell image) : In case of Cell image having less pixel 

size(159X191) bior_2.2 ,Coi_1 & Db_2 provides the better 

compression ratio,  & SNR. However, bior_2.2 is most efficient 

wavelet family for compressing low resolution images. With 

Coi_1, compression ratio is higher but SNR is less compared to 

bior_2.2. Similarly for Db_2, CR high but image quality is low. 

Among other wavelets Coi_1and bior_3.3 gives high SNR but 

Compression Ratio achieved is comparatively low. 

CASE-2(Pout Image): For medium pixel size images such as pout 

(291X240) bior_2.2. , Coi_1 & Db_2 provides better results as is 

the case for low pixel size Cell image. 

CASE-3(Saturn image): For high pixel size images such as Saturn 

(338X438) Coi_2 provides better Compression ratio as compared 

to the biorthogonal & Daubechies families. Bior_2.2 & Db_2 also 

provides good compression ratio but comparatively less than 

Coi_2. 

Finally, it can concluded that for low pixel size image 

biorthogonal wavelet is best among all the families and  for high 

pixel size image coiflets is better suited. In case of medium size 

images, both daubechies & biorthogonal provides better results. 

Simulation results prove the effectiveness of DWT based 

techniques in attaining an efficient compression ratio, achieving 

higher signal to noise ratio and better peak signal to noise ratio 

(PSNR), while the retained signal energy is 99.94% and image 

quality is much smoother. Biorthogonal has the highest 

compression ratio & signal to noise ratio. Results are also tested 

through the wavelet toolbox which has given the higher energy 

ratio. As wavelet image compression has revolutionized image 

compression field with unbelievable results. This involves the 

state of art techniques but wavelet decomposition remains the 

initial step for all these including wavelet packets techniques. 

Therefore there was a need to exploit the inherent ability of 

wavelets. 
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