
International Journal of Computer Applications (0975 – 8887)

Volume 13– No.2, January 2011

6

Rewriting Logic based Approach for the Formalization of

Critical Systems based on Multi-Agent System

Ammar Boucherit
Computer Science Department,

University of Ferhat Abbas, Setif,
Algeria

Abdallah Khebaba
Computer Science Department,

University of Ferhat Abbas, Setif,
Algeria

Faiza Belala
Computer Science Department,

University of Mentouri, Constantine,
Algeria

ABSTRACT

The agent-oriented paradigm is an emerging technology,

which has significant and growing interest, particularly
through its ability to be used in the modeling of all types of
systems and representation of knowledge.

However, this potentiality should not hide the difficulties
associated with them in the design and verification, which
may cause the scientific credibility of multi-agent modeling

field, especially for the case of embedded and critical systems.

In this paper, we propose a new formal approach based on
rewriting logic, in which we attempt to bridge the gap

between agent based system analysis and its specification In

addition, our approach includes a well-known and effective
verification technique, model checking, and allows
independent of the used formalism to verify an important

number of properties deemed relevant on critical system based
on agent paradigm.

General Terms

Software Engineering, Agent-Based System.

Keywords

Critical System, Model-Checking, Multi-agent systems,
Maude, Rewriting logic, Specification, Testing, Verification.

1. INTRODUCTION
Firstly, if we simply put that, a system is an organized
collection of parts (or subsystems) that are highly integrated
to accomplish an overall goal. System modeling is the
process, which we show how the system should be working.
The use of this technique is to examine how various
components work together to produce a particular outcome.

Secondly, nowadays applications (or systems) are strongly

characterized by their complexity. They are usually composed
by heterogeneous and distributed entities, which must
cooperate and coordinate in an "intelligent'' way to exchange
and share knowledge, in order to solve problems which are
difficult or impossible for an individual entity.

The paradigm of multi-agent systems [41, 42], which offers
an original way of modeling, is considered as an appropriate
method that faces the problem of modeling such kinds of
applications. Therefore, multi-agent based modeling method

is present in the most of sectors: telecommunications, finance,
Internet, energy, health, embedded systems ... etc.

Thirdly, the potential of multi-agent systems should not hide
the difficulties associated with them in the design. These
difficulties may discredit the field of agent based modeling as
a whole and affects their relevance, and their scientific
credibility. Moreover, at this time there is no evidence of a
well-established engineering approach for building

multi-agent based applications.

Therefore, it becomes crucial to have rigorous methods of
formal specification and verification to ensure the safe
development of agent based systems, which may be critical
systems, and not risk erroneous attribution to this type of
system, some properties such as security, integrity and

robustness.

In this paper, we present an efficient formal approach based
on rewriting logic formalism by using its language "Maude",
and includes a well-known and effective verification
technique, model checking. In fact, this approach is the
extension and the improvement of our previous work [01, 02].

2. PRELIMINARIES
In this section, we first present some preliminaries and
definitions related to the work to be presented in this paper.

2.1 Agent and Multi-Agent Systems
The increasing complexity of the industrial systems and the

delocalization of the processing call more and more upon the
use of new techniques where the processing can be
decentralized. Therefore, this situation imposes the need for
using entities able to solve problems, and also equipped with
capacities of communication and social reasoning, i.e., they
are able to reason the ones on the others. These entities are
known with the name of Agent. Where an agent is an
encapsulated computer system that is situated in some

environment and that is capable of flexible, autonomous
action in that environment in order to meet its design
objectives [35], and the set of these agents, with these various
capacities constitute a Multi-Agents System (MAS).

Various definitions from different disciplines have been
proposed for the term multi-agent system. As given in [40],
" Multi-agent systems are a new paradigm for understanding
and building distributed systems, where it is assumed that the

computational components are autonomous: able to control
their own behavior in the furtherance of their own goals ".

The most important reason to use agent paradigm when
designing a system, is that some domains require the aptitude
and competence of a set of agents, in order to solve problems,
which are difficult or impossible for an individual agent. In
addition, agents can model complex systems, and the
agent-based modeling of critical industrial applications works

better than other approaches. For example, in a production
factory, the behavior of a complex machine that has own
internal situations, its own rhythm, different reactions in
different situations, can be effectively modeled by an agent.

Finally, even if the multi-agent systems offer an original way
of modeling, and their uses are very different in practice,
because of its promise as a new paradigm for designing
software and systems. We can resume the inherent difficulties
in three points:

International Journal of Computer Applications (0975 – 8887)

Volume 13– No.2, January 2011

7

1) At this time, there is no evidence of a well-established
engineering approach for building MAS-based
applications.

2) The agent-based modeling has generated lots of
excitement and the absence of proof for general
properties of a model leads to problems that may
affect multi-agent systems [03].

3) It would be practically impossible to develop a
universal "MAS Library" and design generic secure
models especially for safety critical systems.

Therefore, it is important to ask about the validation, and
search for rigorous, automated and efficient methods of
design and verification for agent-based systems. The
disposition of such methods will help the designer to develop,
validate and ensure the reliability of critical systems
based-agent before its implementation. These methods should
not be limited to one phase, but it must cover all the process
of their development, in order to prove the safety of models

intended to represent the relevant functions of the system.

2.2 Model-Checking
Model checking is a formal verification technique [05, 06,
07], that determines whether given properties φ of a system
are satisfied by a model M, where a model is defined as a

formal representation of the real world [04]. We write M φ

as a judgment and say a model checker verifies or refutes such

judgments, based on a partial or exhaustive exploration of the
state space of the model. In other words, this formal
verification technique analyzes the reliability, performance
and checks the consistency between a property specification
and a behavior model of the system. Its main objective is to
ensure that none of all these states is inconsistent with the
desired behavior.

The software tool validating a model and solving the

model-checking problem is called model checker. A model
checker typically as presented in the figure (Fig. 1) supports
two different levels of specification: (1) a system specification
level, in which the concurrent system to be analyzed is
formalized; and (2) a property specification level, in which the
properties to be model checked are specified. On the other
hand, model checker outputs either a claim that the property is
true or a counter example reporting the inconsistency. A

counterexample is an execution trace of the state machine
showing how the predicate is false.

Fig 1. Model Checking Approach

Currently, the "on the fly" or "symbolic" model checking are
the most common used. These approaches, initially introduced
to overcome the problem of infinite state machines. The big
advantage of the on-the-fly approach is that hopefully only a
fragment of the overall state space might need to be generated
and analyzed to be able to produce the correct result [36][37].
Contrary to classical methods, their effectiveness has been

demonstrated, and they were used to analyze real systems of
significant size [33, 34].

2.3 Rewriting Logic
Rewriting logic is a computational logic proposed by
Meseguer [13] as a unified logic for (true) concurrency, which
builds upon equational logic by extending it with "rewrite
rules" to adapt it to changes [10], and specification of
concurrent systems. In other words, rewriting logic is known
as a flexible logic and as a unifying semantic framework in
which other logics and a very wide range of concurrency

models and programming languages can be represented, such
us : Petri Net [12], Labeled Transition Systems [13],
E-LOTOS [14], CCS [15, 16], PLAN [17], Pi-Calculus [18]
… etc.

In rewriting logic, a concurrent system can be specified easily
by a rewriting theory. A rewrite theory R is defined as a
4-tuple R = (Σ,E,L,R) where : (Σ,E) is an equational theory,
L is a set of labels, and R is a set of possibly conditional

labeled rewrite rules, t → t' that are applied modulo the
equations E. Intuitively, the signature (Σ, E) of a rewrite
theory describes a particular structure for the states of a
system, and the rewrite rules describe which elementary local
transitions are possible in the distributed state by concurrent
local transformations if a condition C is verified [11,13].

For any term t in the rewrite theory T, we write [t] for its
equivalence class, and we say that [t] → [t'] is provable in T

when it is obtained by a finite application of the following
deduction rules:

Deduction Rules of the Rewriting Logic

2.4 Maude System
Maude [38] is a high-level language and a high-performance

system supporting executable specification and declarative
programming in rewriting logic. Maude is based on rewriting
logic where the object systems from simple to more complex
models are specified easily by the use of the theory of
concurrent objects. The rewrite theory can describe the system
as a configuration of objects declaratively with a high degree
of abstraction.

1. Reflexivity: for each term [t] T ,E(X),

 [t] [t']

2. Congruence : for each operator f n , n N

[t1] [t'1] … [tn] [t'n]

[f(t1, …, tn)] [f(t'1, …, t'n)]

3. Remplacement : for each rewriting rules :

 r : [t(x)] [t'(x)] if

 [u1(x)] [v1(x)] ... [uk(x)] [vk(x)] in R,

 with x abbreviating x1, ... , xn

[w1] [w'1] ... [wn] [w'n]

[u1(xw /)] [v1(xw /)] ... [uk(xw /)] [vk(xw /)]

[t(xw /)] [t'(xw /')]

 with xw / indicate the substitutions of xi by wi 1≤ i ≤ n.

4. Transitivity :

[t1] [t2] [t2] [t3]

[t1] [t3]

International Journal of Computer Applications (0975 – 8887)

Volume 13– No.2, January 2011

8

Maude has been used for specification, prototyping and
testing of a wide range of applications, because it has a
collection of formal tools supporting different forms of
verification such as:

 The Maude Termination Tool (MTT) : can be used to

prove termination of functional Modules;

 The Maude Church-Rosser Checker (CRC) : can be

used to check the Church-Rosser property of

unconditional functional modules;

 An inductive Theorem Prover (ITP) : to verify

properties (theorems), which are defined in functional

modules;

 The Maude Coherence Checker (ChC) : can be used to

check the coherence (or ground coherence) of

unconditional system modules; and

 The Maude Sufficient Completeness Checker (SCC):

can be used to check that defined functions have been

fully defined in terms of constructors.

2.5 The Maude's LTL Model-Checker
Model-checking is as what we said previously, an automatic
method for deciding if a circuit, program or a specification

model, expressed as a concurrent transition system, satisfies a
set of properties expressed in a temporal logic such as LTL.
The Maude's LTL model checker is a very powerful model
checker. It was designed with the goal of combining a very
expressive and general system specification language (Maude)
with an advanced on-the-fly explicit-state LTL model-
checking engine. The main modules used by the Maude's LTL
Model-Checker are presented in the figure (Fig. 2).

Fig 2. The Main Modules of Maude's LTL Model-Checker

In Order to verify such a property, the Maude's LTL model
checker takes as inputs the following modules, which are

defined by the user:

1. Rewrite theory specified by a Maude system module
M-SYSTEM, which describing the behavior of the
system.

2. PROP-M module, which contains the set of predicates
expressed in standard LTL propositional logic as the
defined syntax in the module SATISFACTION.

3. The initial state from which the model checker starts
checking, is specified in module M-CHECK.

In addition to modules defined by user, the Maude's LTL
model checker includes other modules that have well defined
roles:

 MODEL-CHECKER: This is the main module in the

verification process.

 LTL : This functional module formalizes the syntactic

and semantic definitions of linear temporal logic (LTL);

 LTL SIMPLIFIER : It tries to further simplify the

negative normal form of the formula ¬φ : in the hope of
generating a smaller Büchi automaton B¬φ;

 SAT-SOLVAR : It can be used to check both

satisfiability of an LTL formula and LTL tautologies;

 SATISFACTION: A very simple module defines the

standard LTL propositional logic used to express the set
of predicates.

3. CRITICAL SYSTEM FORMALIZATION
When we want to talk about the formalization of critical

systems, it is strongly advised to explore the attempts of
formalization of other systems that can be considered as
critical systems, such as real-time systems, parallel and
complex systems. In addition, because the agent-based
modeling is one of the most used approaches and it works
better than other approaches in the case of critical systems.
We will focus in this section on formalization of multi-agent
based systems.

In the last two decades, multi-agent systems have both
become widely applied and increasingly complex. Therefore,
a lot of approaches, languages and methods have been
proposed to face the problem of developing agent-based
systems [43, 56].

In this section, we will present the works that we are seeing
significant in the field of specification and verification of
multi-agent systems. Then, we will try to summarize the
previous attempts of formalization, in order to reveal the

advantages and the limitations of either kind of approach.

3.1 Formal Specification
The process of development of the information processing
systems includes a whole of phases such as specification,
design, validation and tests. We generally start from an

abstract description of the system, using the natural language
and the passage to the design phase is intuitive. Nevertheless,
when the reliability of the system is too important, it becomes
necessary to start from a formal specification, which describes
the system behavior by means of a formal language. Many
languages were proposed, we give briefly here four examples:

A. CASL Specification Language

The Cognitive Agents Specification Language (CASL) is a
framework for specifying Multi-agent systems, which allows
the specifier to view agents as entities with mental states, such
as knowledge, beliefs, and goals, and to define the behavior of
the agents in terms of their mental states [44]. It combines two

powerful components. The first one is a declarative action
theory, which allows the specifier to describe the effects of
actions on the world and the mental states of agents. The
second component is a rich programming/process language
with constructs for concurrency and non-determinism to
facilitate the specification and verification of multi-agent
systems.

B. AUML

The best-known initiative to extend UML with facilities for
describing agents called AUML. It starts from the idea that
multi-agent systems are often characterized as extensions of

International Journal of Computer Applications (0975 – 8887)

Volume 13– No.2, January 2011

9

object-oriented systems. In other words, if the unified
modeling language (Unified Modeling Language) is an
attempt to unify the different paradigms of analysis and
design object oriented software and provide a unique notation
for modeling object-oriented systems, the AUML was

proposed to adapt the UML notation to describe the
agent-oriented modeling [45,46].

C. The Agent Modeling Language: AML

The Agent Modeling Language (AML) is a semi-formal

visual modeling language, specified as an extension to UML
2.0. AML is designed to capture the aspects of multi-agent
systems. The ultimate objective for AML is to provide a
means for software engineers to incorporate aspects of
multi-agent system engineering into their analysis and design
processes. In other words, AML is designed to support
business modeling, requirements specification analysis, and
design of software systems based on software agent concepts

and principles [55, 58].

D. SLAB Language

In his paper [52], the author was presented a powerful formal
specification language (SLAB) for multi-agent systems. The

(SLAB) language integrates a number of novel language
facilities that support the development of agent-based
systems. In order to show that these facilities are powerful and
useful for the formal specification of agents in various models
and theories, the author specified example systems of agent-
based systems in SLAB.

Many works exist in literature using different formalisms such
as Petri nets, Logics, Languages, UML. In general, we can
distinguish two major kinds of approaches: [19, 20]:

 Behavioral Approach

The first approach consists in specifying a system by giving a
description whose semantics is founded on transition system
(operational semantics). This approach makes it possible to
describe the behavior of a system like the composition of
elementary behaviors. Petri nets, graphs of states, algebras of
process and the languages such as ESTELLE, LOTOS or

SDL, are examples [19, 48].

 Logic Approach

The second approach is generally based on the use of a
language making it possible to express the whole of the
system properties. In this case, the used language is of
declarative type and the system specification will be
expressed by a whole of properties using logic formulas.

Temporal logics are examples of languages used by this
approach for the expression of properties [47, 50, 54].

3.2 Formal Verification
According to the formalism used to represent the system
specification, we distinguish two verification approaches: the

behavioral and the logic verification. In the first approach,
labeled transition systems is the most widely used formalism
for the specification, and the verification process of a system
property reduces to compare two labeled transition systems S
and P. While the second approach, which is generally based
on temporal logic to express all the system properties, the
decision about the satisfaction of a property formula will be
based on model-checking algorithms.

Finally, we can present in the figure (Fig.3) non-exhaustive
list for the attempts were found in the literature for the
formalization of multi-agent systems and the used formalisms.

Fig 3. Formalisms used for the Formalization of MAS

3.3 Synthesis
First, we have to note that in our opinion, the two
specification approaches are complementary, and their
combination can be very interesting, as it is important to adopt
the most appropriate formalism for the representation of the
system. We justify this idea by:

a) The main purpose of the specification is to provide a
complete description of the system. This specification
must sometimes be described in two different point of

views to cover the Static (structural) and Dynamic
(behavior) of the system. In addition, the combined
analysis of static and dynamic aspects of a system is
also necessary for detecting hot spots in the system.
Static view provides an overview of the system that is
structural while the dynamic view shows the
behaviors, interactions and evolution of the system.

b) It is possible to establish (make) another classification

with other criterions, for example: a classification
based on aspects or kind of properties to be checked
(functional and non-functional) of the system. In
addition, it is possible that two formalisms that do not
belong to the same approach in the mentioned
classification can be found together in an other
approach if we change the classification criterions.

c) The same formalism can be used to model the two

aspects of the same system, taking the example of
UML static diagrams and dynamic diagrams.
Therefore, the same formalism may belong to two
different approaches.

Then, because we are interested by the agent based design, we
can also find in the literature, several attempts at formal
specification of multi-agent systems, which tend to describe
an agent in mathematical terms, and those based on Petri nets,
finite state automata, X-machine such as :[21, 22, 23, 24, 25,

27, 28, 49], etc.

In the case of multi-agent systems, the specification is to
develop an abstract model of the real system. The interest of a
model is initially to be more explicit, simpler and easier to
manipulate than the reality it is supposed to represent.
Moreover, the specification of multi-agent systems must be
based on a powerful operational and unambiguous
formalization. Nevertheless, in the view of the absence of a

consensus on the most suitable formalism for specifying
multi-agent systems, we have to note here our agree with the
ideas of [29, 30], that there is no perfect model, and we are

International Journal of Computer Applications (0975 – 8887)

Volume 13– No.2, January 2011

10

wrong if we think that the goal is to offer the most complete
model and the most "beautiful", because the reality is always
more complex than we imagine.

Therefore, we must build the system model with the most
suited formalism to check the properties in question, and not

to limit to the use of a single formalism. Because, as noted in
[31], if we take the example of the paradigm of multi-agent
systems; the specification of system structure can be
performed using UML, while the dynamics of the agents may
be specified using Petri nets or inference rules.

Finally, it is crucial to search for formalisms that allow full
description of the multi-agent based system and the consistent
expression of its different aspects: structure, behavior, control

... etc. In addition, a set of relevant properties of the system
must be verifiable with the proposed formalisms by using
effective tools. Because, as noted in [32]: "any sufficiently
complex system has consequences that exceed its capabilities
of proof" Therefore, the use of such a method is needed from
the initial specification to implementation.

4. FORMALIZATION APPROACH FOR

CRITICAL SYSTEMS BASED ON

MULTI-AGENT SYSTEMS

In system design, the process of verification and validation
can be too complex, especially when it depends to ensuring
that the system has no failures (unexpected behavior) and that
it meets its specifications correctly. Indeed, in the case of
designing critical systems, the steps of formal specification
and verification are essential to avoid any type of error and

validate systems before their implementation. The
specification phase is intended to clearly express all the
expected features of the system, while the integration of the
verification phase in the design process can detect the error
once it appears, and it allows to avoid repeating all the
verification process by reusing intermediate results.

4.1 Global Description
In our approach, which is based on the use of formal and
automatic techniques, we start from a specification written in
rewriting logic of the proposed model for the system, and a
specification of the expected properties, in order to determine
whether the system model satisfies the properties in all its
possible executions. We present in the following figure Fig.4,
the steps of the proposed approach for the verification of

relevant properties of critical systems.

Fig 4. Global Description of the Formalization Approach

4.2 Detailed Description
Our approach for the formalization of multi-agent based

systems can be summarized into three essential steps:

Step 01: (System Specification)

The purpose of this step is to describe the full specification
and to express all the expected features of the system. We
note here that in the case of multi-agent systems, the first step
of specification is to develop a model clearly and
unambiguously. Using one of the most used formalisms such
as UML [57], Petri nets, labeled transition systems … etc

In our approach, we will not be limited to use only one
specification approach or a single formalism, but according to
the aspect or the property to check, we will choose the most
adapted formalism to the case study. In other words, it is very
judicious to use several formalisms for the same system to
take advantages of each formalism and verify a large number
of system properties. [29, 30].

This stage ends with a description of each model in rewriting

logic, which is logic of change and a unifying semantic
framework. Taking advantage of its expressiveness and
powerful tools built into its system Maude. A description of
this step is illustrated in the following figure Fig 5.

Fig 5. Description of the Specification Step

Step 02: (Properties Specification)

If the aim of the first step, is to give a more or less abstract

description of the system. A system can be formally defined
by its properties. In this step, we must prepare a module that
defines the set of predicates expressed in standard LTL
propositional logic. These predicates will be considered by the
Maude's model-checker tool as the set of verified properties in
the system. We always refer to the proposed model and its
specification of the first step. Then, the set of properties to be
checked must be also expressed by using linear temporal
logic.

Step 03: (Verification)

Finally, a verification step is necessary to show that the
system satisfies the desired property and that it exhibits a
stable behavior, and/or certify that the probable malfunctions
of the system causes only moderate damages. Two
verification techniques as illustrated in the figure Fig.6, are
applied to perform this step:

International Journal of Computer Applications (0975 – 8887)

Volume 13– No.2, January 2011

11

1- Model-Checking:
In this technique, we try to check the intrinsic properties of a
model by expressing it using linear temporal logic. The
verification process is achieved with Maude's LTL
model- checker tool.

2- Empirical Test :
This time, we use another Maude's tool, which is: Search. Its
use is based on situations and empirical cases offered by
experts in the field; in order to confirm the absence of critical
situations in the model. The use of this technique is intended
to accomplish the lack of the first technique, which permit to
ensure only the properties expressed in linear temporal logic.

Fig 6. Description of the Verification Step

5. CONCLUSION AND FUTURE WORK
Research in the field of multi-agent systems (MAS) is
becoming increasingly important, particularly through its
ability to model all types of systems. However, the potential

of multi-agent systems (MAS) should not hide the difficulties
associated with them in the design and verification, especially
for the case of critical systems. Formal methods have been
proposed as mathematical techniques to help the designer to
solve this problem. Nevertheless, each of these methods is
used to solve a specific class of problems, depending to the
type of formalisms used.

In this paper, we have extended our previous approach [1, 2],

in order to provide a more comprehensive approach based on
rewriting logic for the specification and verification of critical
systems based agent, including model checking technique and
the technique of empirical test. Our approach allows to verify
a large number of properties of a critical system regardless of
the formalism used for the specification. In other words, our
approach tends to provide a full specification for critical
systems based MAS, leaving the choice to the user to adopt
the most appropriate formalism for the representation of

models and the expression of properties.

The first advantage of this method is that it is applicable
regardless of the type of formalism chosen. In addition, it has
the advantage that it permits to verify several types of
properties: properties that are expressed and those are not
expressible in linear temporal logic. Third, the integration of
verification into the design process can detect an error once it
occurs and avoids redoing all the verification process by

reusing intermediate results.

Our approach still suffers from the problem that it requires a
mastery and competence in the use of the formalism of
rewriting logic. Because the directly description of a model or
the mapping from model to rewriting logic is not always easy.

Finally, in order to palliate this problem in our approach, we

intend to continue our research on the axis of development of
a framework for the automatic generation of the specification
in rewriting logic; at least from the most used formalisms.

6. ACKNOWLEDGMENTS
Our thanks are addressed to the DSSE member's and all

member of LIRE Laboratory for their precious remarks, helps
and their contribution to preparing this work.

7. REFERENCES
[1] F. Belala, A. Boucherit. Contribution to the Formal

Checking of Multi-Agents Systems. Proceedings of the

IEEE International Conference on Computer Systems
and Applications, ISBN: 1-4244-0211-5, 2006, pp. 9-
16.

[2] F. Belala, A. Boucherit. Towards a Videoconference
Interface Formalisation, The 4th International Arab
Conference on computer science and Information
Technology, CSIT06, 2006.

[3] C. Lobry, H. Elmoznino. Combinatorial Properties of
Some Cellular Automata Related to the Mosaic Cycle
Concept, Acta Biotheoretica, Volume 48, Issue 3 - 4,
Dec 2000, pp 219 - 242.

[4] A. Pavé. Modélisation en biologie et en écologie.
ALEAS Ed, Lyon, 1994, 560 p.

[5] M. Vardi and P. Wolper. An automata-theoretic approach

to automatic program verification. In Proceedings of the
1st IEEE Symp. Logic in Computer Science (LICS'86),
Cambridge, MA, USA, June 1986, pp 332–344.

[6] O. Lichtenstein and A. Pnueli. Checking that finite state
concurrent programs satisfy their linear specification. In
Proceedings of the 12th ACM Symp. Principles of
Programming Languages (POPL'85), New Orleans, LA,
USA, 1985, pp 97–107.

[7] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic
verification of finite-state concurrent systems using
temporal logic specifications. In ACM Transactions on

Programming Languages and Systems, volume 8, April
1986, pp 244–263.

[8] N. Marti-Oliet, J. Meseguer, Rewriting Logic as a
Logical and Semantic Framework, Electronic Notes in
Theoretical Computer Science, Vol 4, no1, 1996, pp1-36.

[9] N. Marti-Oliet, J. Meseguer, Rewriting Logic as a
Logical and Semantic Framework, Technical Report
SRI-CSL-93-05, Menlo Park, CA 94025, and Center for
the study of language and Information Stanford
University, Stanford, CA 94305, 1993.

[10] J. Meseguer. Conditional rewriting logic as a unified
model of concurrency, technical report SRI CSL 91.
1991.

[11] J. Meseguer. Rewriting Logic Revisited, Slides of
tutorial presented at WRLA 2002, Pisa, Italy, September
2002.

[12] M.O. Stehr, José Meseguer, and Peter C. Ölveczky.
Rewriting Logic as a Unifying Framework for Petri Nets.

International Journal of Computer Applications (0975 – 8887)

Volume 13– No.2, January 2011

12

In Unifying Petri Nets. Lecture Notes in Computer
Science (Advances in Petri Nets). 2001.

[13] J. Meseguer, Conditional rewriting logic as a unified
model of concurrency. Theoretical Computer Science,
1992, pp 73–155.

[14] A. Verdejo and N. Mart-Oliet. Executing E-LOTOS
processes in MAUDE. In H. Ehrig, M. Grosse-Rhode,

and F. Orejas, editors, INT 2000, Integration of
Specification Techniques with Applications in
Engineering, Extended Abstracts, pp 49-53. Technical
report 2000/04, Technische Universitat Berlin, March
2000.

[15] A. Verdejo and N. Mart -Oliet. Implementing CCS in
MAUDE. In T. Bolognesi and D. Latella, editors, Formal
Methods For Distributed System Development.
FORTE/PSTV 2000 IFIP TC6 WG6.1 Joint International
Conference on Formal Description Techniques for

Distributed Systems and Communications Protocols
(FORTE XIII) and Protocol Specification, Testing and
Verification (PSTV XX) October 2000, Pisa, Italy,
Kluwer Academic Publishers, 2000, pp 351-366.

[16] V. López, J. Alberto, N.Martí Oliet, Executing and
verifying CCS in MAUDE. Technical report, 99-00. pp
1-47.

[17] M.O. Stehr and C. Talcott. PLAN in MAUDE:
Specifying an active network programming language. In
F. Gadducci and U. Montanari, editors, Proc. 4th. Intl.
Workshop on Rewriting Logic and its Applications.
ENTCS, Elsevier, 2002.

[18] P.Thati, S. Koushik, N. Marti-Oliet. An Executable
Specification of Asynchronous Pi-Calculus Semantics
and May Testing in MAUDE 2.0. In 4th International
Workshop on Rewriting Logic and its Applications
(WRLA'02).

[19] Projet SPECTRE : Spécification et programmation des
systèmes communicants et temps réel. Rapport d’activité
INRIA 1996.

[20] A. Benzakour. Vérification formelle des systèmes
parallèles, Mémoire présenté à la Faculté des études
supérieures de l'université Laval pour l'obtention du
grade de Maître ès Sciences. 1997.

[21] P. R. Cohen and H. J. Levesque. Intention is choice with

commitment. Artificial Intelligence, AI, 42(2-3):213-
261, March 1990.

[22] M. Wooldridge. Temporal belief logics for modeling
artificial intelligence systems. Foundations of distributed
artificial intelligence. Wiley-Interscience, 1996.

[23] A. Haddadi. Communication and Cooperation in Agent
Systems. Lecture Notes in Artificial Intelligence, 1996.

[24] M. Benerecetti, F. Giunchiglia, and L. Serafini. Model
checking multiagent systems. Journal of Logic and
Computation, 8(3):401 423, June 1998.

[25] M.Wooldridge. Reasoning about Rational Agents.
Intelligent Robots and Autonomous Agents. The MIT
Press, Cambridge, Massachusetts, 2000.

[26] D. Moldt and F. Wienberg, Multi-agent systems based on
coloured Petri nets, in Application and Theory of Petri

Nets 1997, eds. P. Azema and G. Balbo (Springer,
Berlin, 1997) pp. 82-101.

[27] A. Lomuscio and M. Sergot. The bit transmission
problem revisited. Technical Report 4/2002, department
of computing, Imperial College, London SW7 2BZ, UK,
2002.

[28] W. van der Hoek and M. Wooldridge. Towards a logic of
rational agency. Logic Journal of the IGPL, 11(2):133-
157, March 2003.

[29] P. Bommel. Définition d’un cadre méthodologique pour
la conception de modèles multi-agents adaptée à la
gestion des ressources renouvelables. Thèse de doctorat
en informatique de l’université de Montpellier II-
Sciences et Techniques du Languedoc. 2009.

[30] Ramat, E. Introduction à la modélisation et à la
simulation à événements discrets. In : Modélisation et
simulation multi-agents pour les Sciences de l'Homme et
de la Société, Amblard F. and Phan D. (eds.), Londres,
Hermes-Sciences & Lavoisier, ISBN : 2-7462-1310-9.
2006.

[31] G. Quesnel. Approche formelle et opérationnelle de la
multi-modélisation et de la simulation des systèmes
complexes. Thèse de doctorat en informatique à l’école
doctorale de l’université du Littoral - Côte d’Opale.
2006.

[32] H. ZWIRN Les limites de la connaissance, Paris, Odile
Jacob, 2000.

[33] K. Havelund, A. Skou, G. Larsen, K. Lund. Formal
modeling and analysis of an audio/video protocol : An
industrial case study using UPPAAL. In Proc. 18th IEEE
Real-Time Systems Symposium (RTSS'97), IEEE
Computer Society Press, pp 2–13, 1997.

[34] S. Tripakis, S. Yovine. Verification of the fast

reservation protocol with delayed transmission using the
tool KRONOS. In Proc. 4th IEEE Real-Time
Technology and Applications Symposium (RTAS'98),
IEEE Computer Society Press, pp 165–170, 1998.

[35] N. R. Jennings. On Agent Based Software Engineering.
Artificial Intelligence. Vol. 117, 2000, p. 277-296.

[36] J..C. Fernandez, C.Jard, T.Jron, C.Viho, Using on-the-fly
verification techniques for the generation of test suites, in
Proceedings of Conference on Computer-Aided
Verification (CAV ’96), LNCS 1102, pp. 348-359,
Springer, 1996.

[37] G. Bhat, R. Cleaveland, O. Grumberg, Efficient on-the-

fly Model checking for CTL*, in Prooceedongs of
Symposium on Logics in Computer Science, pp.388-397,
IEEE, 1995.

[38] M. Clavel. Strategies and User Interfaces in Maude at
Work. WRS 2003, 3rd International Workshop on
Reduction Strategies in Rewriting and Programming -
Final Proceedings. Volume 86, Issue 4, December 2003,
Pages 570-592.

[39] S. Eker, J. Meseguer, A. Sridharanarayanan. The Maude
LTL Model Checker. Electronic Notes in Theoretical
Computer Science, Volume 71 From Proceedings of the

4th International Workshop on Rewriting Logic and Its
Applications (WRLA 2002). Edited by Fabio Gaducci
and Ugo Montanari Elsevier, Amsterdam September,
2002

[40] M. Wooldridge. An Introduction to MultiAgent Systems
- Second Edition, Published May 2009 by John Wiley &
Sons. ISBN-10: 0470519460

International Journal of Computer Applications (0975 – 8887)

Volume 13– No.2, January 2011

13

[41] M. Wooldridge and N. R. Jennings. Intelligent Agents:
Theory and Practice. The Knowledge Engineering
Review, 10(2), 1995.

[42] D. T. Ndumu and H. S. Nwana. Research and
development challenges for agent-based systems. IEE
Proc. of Software Engineering, 144(1), 1997.

[43] M. Dastani, K. V. Hindriks, J.C. Meyer. Specification

Language and Verification Environment. 1st Edition,
2010, XVII, 405 p. 100 illus., Hardcover. Publisher:
Springer. ISBN: 978-1-4419-6983-5.

[44] S. Shapiro, Y. Lespérance, and H.J. Levesque. The
cognitive agents specification language and verification
environment for multiagent systems, in Proc. AAMAS,
2002, pp.19-26.

[45] B. Bauer, J. P. Muller, J. Odell. Agent UML: A
Formalism for Specifying Multiagent Interaction. Agent-
Oriented Software Engineering, Paolo Ciancarini and
Michael Wooldridge eds., Springer, Berlin, pp. 91-103,
2001.

[46] L. Kahloul, K. Barkaoui, Z. Sahnoun, Using AUML to

derive formal modeling agents interactions, aiccsa,
pp.109-vii, ACS/IEEE 2005 International Conference on
Computer Systems and Applications (AICCSA'05),
2005.

[47] H. Lin, Designing Multi-Agent Systems from Logic
Specifications: A Case Study, in Vijay Sugumaran (ed.),
Distributed Artificial Intelligence, Agent Technology,
and Collaborative Applications, IGI Global, 2008, pp. 1-
27.

[48] Duboz R., D. Versmisse, G. Quesnel, A. Muzzy, E.
Ramat. Specification of Dynamic Structure Discret event

Multiagent Systems 2006 Agent-Directed Simulation
(ADS 2006). Huntsville, AL, USA, April 2-6 2005.

[49] H. Xu and S. M. Shatz, “An Agent-Based Petri Net
Model with Application to Seller/Buyer Design in
Electronic Commerce,” Proceedings of the IEEE 5th
International Symposium on Autonomous Decentralized
Systems (ISADS), Dallas, Texas, March 2001, pp. 11-18.

[50] V. Mascardi. M. Martelli and L. Sterling. Logic-Based
Specification Languages for Intelligent Software Agents.
Theory and Practice of Logic Programming Journal
(TPLP). Volume 4 Issue 4, July 2004. publisher
Cambridge University Press, pp. 429-494.

[51] M. Martelli, V. Mascardi, Floriano Zini. Specification
and Simulation of Multi-Agent Systems in CaseLP.
APPIA-GULP-PRODE'1999. pp.13-28.

[52] H. Zhu, SLABS: A Formal Specification Language for
Agent-Based Systems, International Journal of Software
Engineering and Knowledge Engineering, Vol. 11. No. 5,
pp529~558.

[53] Finin, T., Labrou, Y.: KQML as an agent communication
language. In J.M. Bradshaw (ed.), Software Agents, MIT
Press, Cambridge, MA, (1997), 291-316.

[54] A. Lomuscio, M. J. Sergot: On Multi-agent Systems
Specification via Deontic Logic. ATAL 2001.

International workshop No8, Seattle WA , ETATS-
UNIS vol. 2333, pp. 86-99.

[55] R. Cervenka, I. Trencanský, M. Calisti: Modeling Social
Aspects of Multi-Agent Systems: The AML Approach.
AOSE 2005. pp. 28-39.

[56] L.S. Sterling, K.Taveter, The Art of Agent-Oriented
Modeling. The MIT Press 2009.

[57] D.S. Dillon, T.S. Dillon, and E. Chang, “Using UML 2.1
to model. Multi- Agent Systems”, Proceedings of the 6th

IFIP Workshop on. Software Technologies for Future
Embedded and Ubiquitous Systems,. Italy, 2008.

[58] I. Trencansky and R. Cervenka, Agent Modeling
Language (AML): A comprehensive approach to
modeling MAS, Informatica 29(4) 2005 391-400.

[59] Aihua Ren, Hui Jiao, Yunfeng Sun: Modeling Mobile
Agent with Object-Oriented Petri Net. ACTA
AERONAUTICA ET ASTRONAUTICA SINICA.
Vol.24 No.1 (Sum No.182) (2003) 57-61.

[60] H. Lin and C. Yang, C. Spécification de systèmes multi-
agent dans le langage Gamma. Proceedings of the IEEE
19th Annual Canadian Conference on Electrical and

Computer Engineering (CCECE05). Ottawa, Ontario,
Canada. Du 7 au 10 mai 2006. Numéro de publication du
CNRC : NRC 48476.

[61] F. Mokhati, M. Badri, L. Badri: A Formal Framework
Supporting the Specification of the Interactions between
Agents. Informatica (Slovenia) 31(3). Pp. 337-350. 2007.

[62] B. Chen, S. Sadaoui. A Generic Formal Framework for
Multi-agent Interaction Protocols. Technical Report TR
2004-05 ISBN 0-7731-0483-6 Department of Computer
Science, University of Regina, Regina SK, Canada,
2004.

[63] D. Kinny, M. Georgeff, and A. Rao, “A Methodology

and Modeling Technique for Systems of BDI Agents,”
Tech. Rep. 58, Australian Artificial Intelligence Institute,
Melbourne, Australia, Jan. 1996.

[64] M. Wooldridge, 1996. “A logic for BDI planning agents”
In Pierre-Yves Schobbens, editor, Working Notes of 2nd
ModelAge Workshop: Formal Models of Agents,
Sesimbra, Portugal

[65] M. Fisher, 1996. An introduction to executable temporal
logics. Knowledge Engineering Review, 11(1). pp. 43–
56.

[66] M. Wooldridge, N. Jennings and D. Kinny, The GAIA
Methodology for agent-oriented analysis and design,
Autonomous Agents and Multi-Agent Systems 3(3) (2000)
285-312.

[67] A. Mohammed, U. Furbach. Multi-agent
Systems:Modeling and verification Using Hybrid
Automata. In Lars Braubach, Jean-Pierre Briot, and John
Thangarajah, editors, Revised and Invited Papers of the
post-proceedings of 7th International Workshop on
Programming Multi-Agent Systems (ProMAS2009),
LNAI 5919, pages 49-66, Springer.

