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ABSTRACT 

The decision making of Prognostics and Health management 

under uncertainty is addressed in this paper. Dempster-Shafer 

theory is adopted to tackle this problem and some modification 

about this method is made to accommodate with practice. The 

decision-making method and decision process are detailed. 
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1. INTRODUCTION 

The management of uncertainty is an important and often 

overlooked aspect in the estimation of remaining component 

life [1]. The extrapolation of trends based on recent 

observations is a common method for calculating remaining 

life. This calculation alone, however, does not provide 

sufficient information to form a decision or corrective action. 

Without corresponding measures of the uncertainty associated 

with the calculation, remaining life projections may have little 

practical value.In all but the simplest components, remaining 

life also depends on the destructive forces encountered during 

use (loads, temperature, humidity, corrosive exposure, shock 

etc.)[2].These are often governed by unpredictable events and 

circumstances that cannot be known a priori. 

Major drawbacks of classical statistical estimation techniques 

(Bayesian theory) are that they require prior estimates and 

Competing hypotheses must be mutually exclusive. However it 

is usually difficult to define prior likelihoods. The interest in 

Dempster-Shafer theory stems from the richness of its 

uncertainty representation scheme. The Bayesian approach and 

Dempster-Shafer theory share fundamental ideas and produce 

identical results when uncertainties are not extreme. In fact, 

Bayesian analysis arises as a special case within the more 

generic Dempster-Shafer theory [3]. Disagreement between 

these two theories occurs when quantifying weak evidence and 

its associated uncertainties since in such situations the 

Dempster-Shafer theory offers greater flexibility than the 

Bayesian approach. 

Probability theory lacks the ability to handle such situations 

when there is little information on which to evaluate a 

probability or when that information is nonspecific, ambiguous, 

or conflicting. Where it is not possible to characterize 

uncertainty with a precise measure such as a precise 

probability, it is reasonable to consider a measure of probability 

as an interval or a set. 

Dempster-Shafer theory (DST) is a powerful theoretical tool 

which can be applied for the representation of incomplete 

knowledge, belief updating, and for combination of evidence 

through the Demspter-Shafer’s rule of combination. The 

Dempster-Shafer model of representation and processing of 

uncertainty has led to a huge number of practical applications in 

a wide range of domains. 

The Dempster-Shafer theory is based on two ideas: the idea of 

obtaining degrees of belief for one question from subjective 

probabilities for a related question, and Dempster's rule for 

combining such degrees of belief when they are based on 

independent items of evidence. 

Implementing the Dempster-Shafer theory in a specific 

problem generally involves solving two related problems. First, 

we must sort the uncertainties in the problem into a priori 

independent items of evidence. Second, we must carry out 

Dempster's rule computationally. These two problems and and 

their solutions are closely related. Sorting the uncertainties into 

independent items leads to a structure involving items of 

evidence that bear on different but related questions, and this 

structure can be used to make computations feasible. 

Utilizing Dempster-Shafer theory to address the uncertainty 

problems, especially the decision level fusion of multiple 

resource data deserves to be researched. And it may involve 
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tackling some practical problems that may be encountered in 

application.  

Uncertainty Analysis 

Prognosis is certainly the Achilles’ heel of the Prognostics and 

Health Management (PHM) system and presents major 

challenges to the CBM/PHM system designer primarily 

because it entails large-grain uncertainty [4].  Uncertainty 

management of prognostics holds the key for a successful 

penetration of prognostics as a key enabler to health 

management in industrial applications [5]. Long-term 

prediction of a fault evolution to the point that may result in a 

failure requires means to represent and manage the inherent 

uncertainty. Bhaskar Saha et al [6] summarized soureces of 

uncertainty as multiple sources of error like modeling 

inconsistencies, system noise and degraded sensor fidelity. 

Irrespective of whether the diagnostic/prognostic algorithms 

are model-driven or datadriven it is not feasible to eliminate all 

of the above error factors. 

One of the major challenges to the designers of modern PHM 

systems is the need to develop diagnostic and prognostic 

methods that are truly capable of handling real world 

uncertainties – as the real world is not deterministic. Such real 

world uncertainties cause havoc with deterministic approaches 

leading to high false alarm rates, inaccurate predictions, 

incorrect decisions and an overall PHM system that is not very 

robust. Some of the issues uncertainty presents to the designer 

are elaborated on below, including issues associated with 

various steps in the predictive process, the estimate of current 

condition, the prediction of time to failure (or time remaining) 

and the choice of appropriate lead times (how far ahead to 

predict); and on the choice of an overall prognostic 

methodology [7]. 

2. DECISION MAKING BASED ON DS 

THEORY [8-11] 

2.1 DS theory 

In a finite discrete space, Dempster-Shafer theory can be 

interpreted as a generalization of probability theory where 

probabilities are assigned to sets as opposed to mutually 

exclusive singletons. In traditional probability theory, evidence 

is associated with only one possible event. In DST, evidence 

can be associated with multiple possible events, e.g., sets of 

events. As a result, evidence in DST can be meaningful at a 

higher level of abstraction without having to resort to 

assumptions about the events within the evidential set. Where 

the evidence is sufficient enough to permit the assignment of 

probabilities to single events, the Dempster-Shafer model 

collapses to the traditional probabilistic formulation. One of the 

most important features of Dempster-Shafer theory is that the 

model is designed to cope with varying levels of precision 

regarding the information and no further assumptions are 

needed to represent the information. It also allows for the direct 

representation of uncertainty of system responses where an 

imprecise input can be characterized by a set or an interval and 

the resulting output is a set or an interval. 

Let X be the universal set: the set of all states under 

consideration. The power set 

 

is the set of all subsets of X, including the empty set . For 

example, if: 

 

then 

 

The elements of the power set can be taken to represent 

propositions that one might be interested in, by containing all 

and only the states in which this proposition is true. 

The theory of evidence assigns a belief mass to each element of 

the power set. Formally, a function 

 

is called a basic belief assignment (BBA), when it has two 

properties. First, the mass of the empty set is zero: 

 

Second, the masses of the remaining members of the power set 

add up to a total of 1: 

 

The mass m(A) of a given member of the power set, A, 

expresses the proportion of all relevant and available evidence 

that supports the claim that the actual state belongs to A but to 

no particular subset of A. The value of m(A) pertains only to 

the set A and makes no additional claims about any subsets of 

A, each of which have, by definition, their own mass. 
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From the mass assignments, the upper and lower bounds of a 

probability interval can be defined. This interval contains the 

precise probability of a set of interest (in the classical sense), 

and is bounded by two non-additive continuous measures 

called belief (or support) and plausibility: 

 

The belief bel(A) for a set A is defined as the sum of all the 

masses of subsets of the set of interest: 

 

The plausibility pl(A) is the sum of all the masses of the sets B 

that intersect the set of interest A: 

 

The two measures are related to each other as follows: 

 

And conversely, for finite A, given the belief measure bel(B) 

for all subsets B of A, we can find the masses m(A) with the 

following inverse function: 

 

where |A − B| is the difference of the cardinalities of the two 

sets. 

It follows from the last two equations that, for a finite set X, you 

need know only one of the three (mass, belief, or plausibility) to 

deduce the other two; though you may need to know the values 

for many sets in order to calculate one of the other values for a 

particular set. In the case of an infinite X, there can be 

well-defined belief and plausibility functions but no 

well-defined mass function. 

2.2 Combination rule 

Dempster’s rule combines multiple belief functions through 

their basic probability assignments (m). These belief functions 

are defined on the same frame of discernment, but are based on 

independent arguments or bodies of evidence. The combination 

rule results in a belief function based on conjunctive pooled 

evidence. The Dempster rule of evidence theory provides the 

combination method of two bpa’s m1 and m2 in the following 

manner: 
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When there are many evidences, they can be combined one by 

one based on Dempster combination rule. 

 

3. DECISION MAKING OF PHM 

Here we assume there is a decisions set D: (D1, D2 …Dn, U) 

for remaining life measurements to take. And there is a 

multi-information sources set I: (I1, I2 …Im), each information 

source have a corresponding belief allocation for decisions set 

D, thus they form a matrix B: (Bij) between multi-information 

sources set I and decisions set D. 

Then we adopt the combination rule to integrate the belief 

allocation from different information sources. Firstly the belief 

allocation from I1 and I2 are combined.  

Next step the combination result of I1 and I2 will be integrated 

with I3 according to the same combination rule. The previous 

will be continued till the belief allocations from all information 

sources are integrated. 
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Actually different sensors or information sources have different 

test ability, accuracy and reliability, however the above 

combination rule just take all information source with the same 

degree of confidence, which is not accordance to the 

engineering practice. And the above combination rule often 

encounters the problem with conflict data source and do not 

have ability to tackle that problem. Here we introduce a 

confidence factor set E for the information source as follows. 

 1 2 mE= e e e
 

Then we can get the new matrix B : (Bij) between 

multi-information sources set I and decisions set D. 
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Also we can get the new combination of I1 and I2. 
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4. EXAMPLE AND RESULT 

Here a brief example is offered to illustrate the decision making 

of PHM under uncertainty. Let Decision making frame D={D1, 

D2, D3, D4}, multi-information sources frame S={S1, S2, S3} 

and we assume they have equal degree of confidence, and the 

basic probability assignment space is as the table 1. U is used to 

denote the uncertainty. The combination of S1 and S2 are as 

table 2. 

Table 1. Basic probability assignment space 

 D1 D2 D3 D4 U 

S1 0.05 0.4 0.05 0.35 0.15 

S2 0.1 0.3 0.1 0.4 0.1 

S3 0.15 0.2 0.1 0.45 0.1 

Table 2. Combinations of S1 and S2 

 

S1 

D1(0.0

5) 

D2(0.

4) 

D3(0.0

5) 

D4(0.3

5) 

U(0.1

5) 

S

2 

D1(0.

1) 
0.005 0.04 0.005 0.035 0.015 

D2(0.

3) 
0.015 0.12 0.015 0.105 0.045 

D3(0.

1) 
0.005 0.04 0.005 0.035 0.015 

D4(0.

4) 
0.02 0.16 0.02 0.14 0.06 

U(0.1) 0.005 0.04 0.005 0.035 0.015 

Thus we can get the combination result of S1 and S2 

Table 3. Combinations result of S1 and S2 

D1 D2 D3 D4 U 

0.05 0.41 0.05 0.46 0.03 

We can see that the bpa of the uncertain falls distinctly from the 

result. But it is difficult to make the right judgment for the bpa 

of D2 and D4 is closely. So we continue to combine this result 

with S3. 

Table 4. Combination of S1, S2 and S3 

 

S3 

D1(0.1

5) 

D2(0.

2) 

D3(0.

1) 

D4(0.4

5) 

U(0.

1) 

S1,

2 

D1(0.0

5) 
0.0075 0.01 0.005 0.025 

0.00

5 

D2(0.4

1) 
0.0615 0.082 0.041 0.1845 

0.04

1 

D3(0.0

5) 
0.0075 0.01 0.005 0.025 

0.00

5 

D4(0.4

6) 
0.069 0.092 0.046 0.207 

0.04

6 

U(0.03

) 
0.0045 0.006 0.003 0.0125 

0.00

3 

Thus we can get the combination result of S1, S2 and S3. 

Table 5. Combinations result of S1, S2 and S3 

D1 D2 D3 D4 U 

0.04 0.30 0.03 0.62 0.01 

We adopt the method of basic probability value based decision, 

and select 1 2 0.1  
, thus the decision result is D4. 



International Journal of Computer Applications (0975 – 8887) 

Volume 13– No.4, January 2011 

5 

5. CONCLUSIONS 

The decision making of Prognostics and Health management 

under uncertainty can be addressed with Dempster-Shafer 

theory or modified Dempster-Shafer theory. The probability of 

achieving correct decision and reducing uncertainty is 

increased in decision making.  
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