
International Journal of Computer Applications (0975 – 8887)
Volume 13– No.5, January 2011

1

Buffer Overflow Attack – Vulnerability in Stack

 P.Vadivel Murugan Dr.K.Alagarsamy
 Research Scholar Associate Professor
 Madurai Kamaraj University Madurai Kamaraj University
 Madurai-Tamil Nadu- India Madurai-Tamil Nadu-India

ABSTRACT
Most of the vulnerability based on buffer overflows aim at
forcing the execution of malicious code, mainly in order to

give a root shell to the user. The malicious instructions are
stored in a buffer, which is overflowed to allow an unexpected
use of the process, by changing various memory sections.

Buffer overflow attacks exploit a need of bounds checking on
the size of input being stored in a buffer array. By writing the
data into the memory assigned to array, the attacker can make
arbitrary changes to program state stored an adjacent to the
array.

A buffer overflow is an inconsistent, where a process attempts
to store data beyond the boundaries of a fixed length buffer.
So that the additional data overwrites next memory the

techniques to exploit buffer overflow vulnerability vary per
architecture, operating system and memory region locations.
The overwritten data may include other buffers, variables and
program flow data a technically inclined and malicious user
may exploit stack-based buffer overflows to manipulate the
program[9,10].

Keywords: Buffer overflow exploit, stack allocation, heap
function, memory allocation

1. INTRODUCTION
In C and C++ and other programs have buffer overflow
vulnerabilities, both because the C language lacks array
boundary checking, and because the method of C
programmers promote a performance oriented style that
avoids error checking where possible. For example, many of
the standard C library functions such as gets and strcpy do not
do bounds checking by default.

 Figure 1: Stack collision Buffer Overflow Attack

The general form of buffer overflow exploitation is to attack

buffers allocated on the stack. Stack collision attacks strive to

achieve two mutually dependent goals, illustrated in Figure 1:

1.1 The Source of the Problem
The local variables are allocated on the stack, along with
parameters and linkage information’s. The accurate content
and order of data on the stack depends on the operating
system and processing unit architecture. When you use
malloc, new, or the same functions to allocate a block of
memory or instantiate an object, the memory is allocated on
the heap.

Every time your program requests the input from a user, there

is a potential for the user to enter inappropriate data. For
example, they might enter the more data than you have
reserved for in memory. If the user enters more data than will
fit in the reserved memory space and you do not trim it, then
that data will overwrite other data in memory. If the memory
overwritten contained data vital to the operation of the
program, this overflow will cause a bug that, being irregular,
might be very hard to find. If the overwritten data includes the

address of other code to be performed and the user has done
this intentionally, the user can point to malicious code that
your program will then executes.

In the case of data saved on the stack, such as a local variable,
it is relatively simple for an attacker to overwrite the linkage
information in order to execute malicious code. An attacker
can also change local data and function parameters on the
stack .The data on the heap changes in a no understandable
way as a program runs; utilize a buffer overflow on the heap
is more difficult. However, many exploits have involved heap

overflows. Attacks on the heap might involve overwriting
critical data, either to cause the program to crash, or to modify
a value that can be exploited later (such as a program
temporarily stores a user name and password on the heap and
an attacker control to change them). In some cases, the heap
contains pointers to executable code, so that by overwriting
such a pointer an attacker can execute the malicious code.
Although most programming languages check input against

storage to prevent buffer overflows, C, and C++ do not.
Because many programs link to C libraries, weakness in
standard libraries can cause vulnerabilities even in programs
written in "safe" languages. For this reason, even if you are
confident that your code is free of buffer overflow problems,
you should limit the exposure by running with least privileges
possible.

2. DETECTING BUFFER OVERFLOWS
To test the buffer overflows, you should attempt to enter extra
data than is asked for wherever your program accepts input.
Also, if your program accepts data in a standard format, you
should attempt to use malformed data. For example, if your
program asks for a filename, you should attempt to enter a
string longer than the maximum level filename. Or, if there is
a data field that specifies the size of a block of data, attempt to

International Journal of Computer Applications (0975 – 8887)
Volume 13– No.5, January 2011

2

use a data block larger than the one you specify in the size
field. If there are buffer overflows in your program, it will
ultimately crash. (Regrettably, it might not crash until
sometime later, when it tries to use the data that was
overwritten.) .The crash log might provide some clues that the
root of the crash was a buffer overflow attack.

Figure.2 Buffer overflow crash log

If there are many buffer overflows in your program, you
should assume they are exploitable and fix them. It is much

hard to prove that a buffer overflow is not exploitable than
just to fix the bug.

3. CONCLUSIONS

Preventing buffer overflow exploits
Buffer overflow attack can be prevented. If the programmers
were perfect in writing program coding, there would be no
unchecked buffers, and consequently, no buffer overflow
exploits. However, the programmers are not perfect, and
unchecked buffers continue to abound. When unchecked
buffers are found, vendors are often release patches that
correct the problem. Unfortunately, keeping patches up to date
on a large numbers of systems is difficult and many system
administrators fail behind in patch deployments.

Calculating Buffer Sizes
You should always calculate the size of a buffer and then
make sure you don't put excess data into the buffer than it can
be hold. The reason you should not assume a static size for a

Table 1: C coding styles to use and avoid

buffer is because, even if you originally allocate a static size
to the buffer, either you or someone else maintaining your
programming code in the future might change the buffer size,
but fail to change every case where the buffer is written to.

You should always use unspecified variables for calculating
sizes of buffers and the data going into buffers. Because the
negative numbers are stored as large positive numbers, if you
use signed variables an attacker might able to alter in the size
of the buffer or data by writing a large number of coding to
your program.

4. REFERENCE
[1] Buffer Overflow Attacks on Linux Principles Analyzing

and Protection Zhimin Gu Jiandong Yao Jun Qin
Department of Computer Science, Beijing Institute of
Technology (Beijing 100081)

[2] Computer emergency response team (cert).
http://www.cert.org.The Meta sploit project. http://www.
metasploit. com

[3] RamKumar ChincChani and Eric Van Den Berg. A fast
staticanalysis approach to detect exploit code inside
network flows.In RAID, 2005.

 [4] C. Kruegel, E. KirDa, D. Mutz, W. Robertson, and G.
Vigna.Polymorphic worm detection using structural
information ofexecutables. In RAID, 2005.

 [5] Michalis Polychranakis, Kostas G. Anagnostakis,
andEvangelos P. Markatos. Network Level Polymorphic
Shellcode Detection using Emulation. DIMVA , 2006.

[6] XinRan Wang, ChiChun Pan, Peng Liu, and Sencun Zhu.
Sig free: A signature Free Buffer Overflow Attack

Blocker. In 15 th Use nix Security Symposium, July
2006.

 [7] Navjot Singh Libsafe: Protecting CriticalElement of

Stacks White Paper December25, 1999Litchfield, D.
(1999).

[8] Exploiting Windows NT for Buffer Overruns. Posted to
Bugtraq mailing list in May1999.
http://www.infowar.co.uk/mnemonix/ntbufferoverruns.ht
m.Mudge. (1995). How to write Buffer Overflows. http://
l0pht. com/ advisories/bufero.html.

[9] Smith, N.P. (1997). Stack smashing vulnerabilities in the
UNIX operating system. Southern Connecticut State
University. http:// destroy.net/ machines/ security/

[10] Summerfield, B. (1997) Re: Smashing the stack. From
the Bugtraq mailing list. www. securityfocus. com /
templates/ archive.pike 1997-01-21

 [11] Spafford, E. H. (1988) The internet worm program: An
analysis. ACM Computer Communication Review;
19(1), pp. 17-57. tp://www.cs.purdue.edu/homes/
spaf/techreps/823.ps.

[12] S. Alexander. Defeating compiler level buffer overflow
protection. The USENIX Magazine, 30(3), June 2005.

[13] S. Nanda and T.C. Chiueh. Foreign code detection for
Windows/X86 binaries. ECSL Technical report TR- 190,
Computer Science Department,Stony Brook University,
2005.

[14] M. Rinard, C. Cadar, D. Roy, and D. Dumitran. A
dynamic technique for eliminating buffer overflows
vulnerabilities (and other memory errors). In
Proceedings of the 20th Annual Computer Security
Applications Conference (ACSAC), December 2004.

[15] Z. Liang, R. Sekar, and D.DuVarney. Automatic
synthesis of filters to discard buffer overflow attacks: A

step towards realizing self healing systems. In USENIX
Annual Technical Conference, 2005.

Don't use this style Use this style instead

char buf[1024];

if (size <= 1023) {...}or

char buf[1024];...

if (size < 1024) {...}

char buf[BUF_SIZE];

if (size < BUF_SIZE) {...}

or char buf[1024]; ...

if (size < sizeof(buf)) { ... }

{char

file[MAX_PATH];...

addsfx(file); ...}

static *suffix = ".ext";

char *addsfx(char *buf)

{

return strcat(buf, suffix);

}

{char

file[MAX_PATH];...addsfx(fi

le, sizeof(file));

...}static *suffix = ".ext";char

*addsfx(char *buf, uint size)

{ return strlcat(buf, suffix,

size);}

