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ABSTRACT 
Different class of stakeholders of Computational Grid has their 
own perspective and preferences, which result in different, often 
contradictory, criteria for scheduling (main step of grid resource 
management). To increase the level of satisfaction of different 
class of stakeholders grid management system must use the 
scheduling heuristic, which provides compromise solution (i.e.  a 
compromise schedule) using the many conflicting objectives. 

Present work analysed, conflicting as well as harmonious, 
interactions of Many-Objectives and performed many objective 
comparison to find the most suited heuristics out of the twelve 
popular  heuristics by1- Visualization objectives of using 3D Bar 
Chart and Radar Chart in manner suggested, 2- Non-dominated 
Ranking of Heuristics and 3-Qualitative Comparison. Emphasis is 
given to computation time taken by heuristics.  
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1. INTRODUCTION 
Connecting geographically distributed computational resources 
such as PCs, workstations, clusters, servers, and super computers, 
Computational Grids have emerged as a next generation 
computing platform for large-scale problems solving in 
academics, research and industry. Grid resource management 
involves dealing with three classes of stakeholders - end users 
making use of grid resources, owners of resources, and grid 
administrators. Each class of stakeholders has their own 

perspective and preferences, which result in different, often 
contradictory, criteria for scheduling (main step of Grid Resource 
Management). To increase the level of satisfaction of these 
stakeholders grid management system must use the scheduling 
heuristic, which provides compromise solution (i.e.  a 
compromise schedule) using the many conflicting objectives.  

Scheduling of task on heterogeneous grid resources is known to 
be a NP-complete problem; therefore, to get a near optimal 

solution within finite duration, heuristics/meta-heuristics are used 
instead of exact optimization methods. In some real-world 
situations, the meta-heuristic methods are too difficult or 
inappropriate, for example in fully automated systems (where we 
cannot tune parameters manually) or where the execution time 
should be very short, or for extremely large problems, etc. 
Therefore using pure heuristics in such situations is an appropriate 
solution (Izakian et al, 2009 b). 

Much of the research into multi-objective algorithms  concentrates 
on optimisation with two conflicting objectives. However, the 
real-world challenges to which these algorithms are applied often 
feature many more objectives (Coello et al, 2002). As the number 
of objectives increases solutions provided by methods become 
non-dominated and selecting one of the method from the available 

scheduling methods become difficult.  Hence, there is a clear need 
to extend multi-objective optimization research into the realm of 
many-objectives (Farina and Amato, 2002). 

Multi-objective algorithms are widely established and well 
developed for problems with two or three objectives. However, it 
is known that for many-objective optimization, where there are 
typically more than three objectives,   applying Pareto optimality 
as a ranking metric may loose their effectiveness (Purhouse, 
2003).  

Present work analysed, conflicting as well as harmonious, 
interactions of Many-Objectives and performed many objective 

comparison to find the most suited heuristics out of the several 
available heuristics by following proposed methods  

 Visualization of objectives using 3D Bar Chart and 

Radar Chart in manner suggested. 

 Non-dominated Ranking of Heuristics 

 Qualitative Comparison 

Emphasis is given to computation time taken by heuristics. 

Section 2 discussed proposed methods  to compare Many-
Objectives of a problem, in section 3 Many-Objectives of 
different stakeholders of computational grid are identified, twelve 

heuristics for grid scheduling are explained in section 4,  set of 
popular twelve challenging instance  of grid scheduling problem 
are mentioned in section 5,  computational results and conclusions 
are presented in section 6  and 7 respectively. 

2. MANY OBJECTIVE COMPARISON 
In grid scheduling problem there are many objectives and these 

objectives are not independent. There exist conflicting as well as 
harmonious interaction between objectives. When objectives are 
in harmony improvement of objective leads to simultaneous 
improvement of other but when objectives are in conflict 
improvement of one leads to simultaneous deterioration of 
another. 

2.1 Visualisation of Objectives  
For more than three objectives it is not possible to compare the 
result in objective space using conventional methods like x,y 
scatter plot, 3d plot.  Here it is suggested to use 3D Bar Chart and 
Radar Chart, in the manner described below, to graphically 
represent the many objective result.  

To bring the different objective function values on common scale 

normalized value of objective function on 0 to 1 scale is 
calculated using maximum and minimum value of the objective 
function for all methods 

                       (1) 

Here fmax and fmin are the maximum and minimum value of 

objective function calculated using different heuristics 
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2.2 Non-dominated Ranking of Heuristics 
Many-objective optimization, where there are typically more than 

three objectives,   applying Pareto optimality as a ranking metric 
may loose their effectiveness (Purhouse, 2003). To overcome this  
Many-objective performance of different scheduling heuristics is 
compared by finding frequency of their attaining different ranks in 
non dominated comparisons.  

Non-dominated Ranking comparison segregates the heuristic 
methods in different ranks i.e. rank 1,2,3…so on. Rank 1 is the 
highest rank. The methods, which get rank 1 are non-dominated 

by other rank 1 methods but dominates all the methods which get 
lower than 1   rank. Similarly rank 2 methods dominate methods 
of rank 3 and lower ones. 

Non-dominated ranking can be performed for different 
combinations of objective functions i.e. by considering all 
objectives as well as by considering less number of objectives. If 
there are N objective then there can be NCN, 

NCN-1, 
NCN-2  …   

NC4,
 

NC3, and NC2 combination. 

Overall performance of these heuristics is evaluated by finding 
frequency of their attaining different ranks in non dominated 
ranking for all possible combinations of objective functions and 
for all  instances of scheduling problem. Method can be rated 
based on their frequency count of different ranks. 

2.3 Qualitative Comparison 
Value of different objective function varies in different range 
hence Many-objective comparison is difficult.. For comparison of 
quality of solution provided by a particular heuristic  normalized 
value of each objective function is calculated using equation (1) 

Quality of objective function value can be expressed subjectively 
using word Best, Good, Fair and Poor based on range of 
normalized objective function value as shown below. 

Quality of 
Objective 

Range of  

Best  

Good  

Fair  

Poor  

 

Heuristic giving more number of best objectives can be 
considered a better method. 

2.4 Correlation between Objectives 
In grid scheduling problem there are many objectives and these 
objectives are not independent. There exist conflicting as well as 
harmonious interactions between objectives. To evaluate this 
correlation can be find out between these objectives. When 
correlation coefficient is positive then there is harmony between 
objectives and when this is negative then there is conflict between 
the objectives. 

3. OBJECTIVES OF GRID SCHEDULING 
The grid scheduling problem is multi-objective in nature. Several 
performance measures and optimization criteria can be considered 
to evaluate the quality of a given schedule and overall grid system 
performance. 

3.1 Makespan 
Most popular optimization criterion is minimization of Makespan 

i.e. the finishing time of the latest job. Makespan measures the 
throughput of  grid system. It can be defined as: 

Cmax = max {Cj , j=1,…,N}     (2) 

3.2 Flow time 
Flow-time is the sum of the finishing times of jobs. Flow time 
measures the Quality of Service of the grid system. It can be 
defined as: 

F =∑Cj , j=1,…,N    (3) 

Flow time is minimum when jobs are processed in ascending 
order of processing time on a particular grid resource. It is 
followed while calculating Flow-time. 

3.3 Resource utilization  
Due to economic aspect resource providers and grid managers are 
interested in the maximum utilization of resource. Resource 
utilization defined as the degree of utilisation of resources with 
respect to the schedule. The resource utilisation is defined using 
the completion time of a machine, which indicates the time at 
which machine m will finalise the processing of the previous 

assigned jobs as well as those already planned for the machine. 
Formally, it is defined as follows: 

  (4) 

Here completion[i] is the completion time of last job on machine 
i, nb_machines is number of machines. Objective is to maximize 
the resource utilisation for all possible schedules. 

3.4 Matching Proximity 
In grid computing effort is made to process the task on the best 
possible machine i.e. the machine which takes minimum 
execution time. Matching Proximity indicates the degree of 
proximity of a given schedule to the schedule produced by the 

Minimum Execution Time (MET) method, which assigns a job to 
the machine having the smallest execution time for that job. 
Matching proximity is an additional performance parameter of 
batch mode methods. A large value for matching proximity means 
that a large number of jobs is assigned to the machine that 
executes them faster. It can be defined as: 

  (5) 

3.5 Computation Time  
Due to dynamic nature of grid, computation time needed to 
generate schedule is also an important criterion for selecting a 
suitable scheduling method. In grid scheduling problem there is 
no need to get the optimal solutions. In the highly dynamic 
environment it is essential to get high quality feasible solution in 
short time. Computation time of the order of 1 micro second is 
measured for different heuristics. 

4. HEURISTIC METHODS FOR GRID 

SCHEDULING 
There are many heuristics for grid scheduling. Twelve popular 
heuristics, considered in this comparative study, are described in 

this section. For details please refer (Braun et al, 2001), 
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(Maheswaran et al, 1999), (Xhafa et al, 2007a), (Xhafa et al, 
2007b), and (Izakian et al, 2009 a).  

4.1 Opportunistic Load Balancing (OLB)  
In this method earliest idle machine is selected without 
considering the job’s execution time on the selected machine. If 
two or more machines are idle then machine is selected arbitrarily.  
In this method time required for Scheduling is less and it keeps 
almost all the machines busy at all possible time. Resulting 
schedule is not optimal. 

4.2 Minimum Execution Time (MET) 
In this method minimum execution time is used to assign the job 
without considering the machine availability. Job is assigned to 
the machine on which it can be executed in minimum time. 
Allocating job without considering machine availability results in 
load imbalance on grid machines. 

4.3 Minimum Completion Time (MCT) 
In this method job is assigned to the machine that gives minimum 
completion time (ready time of machine + job execution time on 
the selected machine) for the job. Allocating job in this manner 
may result in execution of job on less faster grid machines.  

4.4 Switching Algorithm (SA) 
This method of scheduling combines the best features of MCT 
and MET methods of scheduling. The method tries to use better 
load balancing of MCT and execution on fastest machine of MET. 
Here the idea is to first use the MCT till a threshold of balance is 

reached followed by MET which creates the load unbalance by 
assigning jobs on faster machines. Here MCT and MET are used 
in cyclic manner. 

4.5 k-Percent Best (kPB) 
This method also attempts to combine the best features of MCT 

and MET simultaneously instead of cyclic manner. In this method 
only k percentage of best resources, on the basis of execution 
time, are considered while assigning the jobs. For a particular job 
a resource which gives minimum completion time is selected out 
of the k percent best resources instead of all possible resources. 
For k=100 this method act similar to MCT while for k=100/total 
number of machines this method act similar to MET. Here kPB 
has serious drawback that in a situation when k percentage 
resources are busy  but other resource are free, even in such 

situation  kPB allocates job only to one of busy k percent best 
resource. As a result there is large idle time of resources in the 
generated schedule. 

4.6 Min-min 
In this method completion time of all unassigned tasks (1 ≤  j  ≤n)  

on all the available machines (1 ≤  i  ≤ m)  is used to calculate the 
minimum completion time (MCTi) of task Ti on machine Mi*. 
Then task which gives minimum of MCTi is identified 
T*={min(MCTi) for (1 ≤  i  ≤ m) } and assigned on the machine 
M*. Subsequently the task T* is removed from the list of 
unassigned task and workload of machine M* is updated. Above 
procedure is repeated till unassigned task list get exhausted.   

4.7 Max-min 
In this method, similar to min-min method, completion time of all 
unassigned tasks (1 ≤  j  ≤n)  on all the available machines (1 ≤  i  
≤m)  is used to calculate the minimum completion time (MCTi) of 
task Tj on machine Mi*. Then task which gives maximum of 

MCTi is identified T*={max(MCTi) for (1 ≤  i  ≤ m) } and 
assigned on the machine M*. Subsequently the task T* is 
removed from the list of unassigned task and workload of 
machine M* is updated. Above procedure is repeated till 
unassigned task list get exhausted.   

4.8 LJFR-SJFR 
Largest Job on Fastest Resource – Shortest Job on Fastest 
Resource (LJFR-SJFR) method allocates largest job on fastest 
resource to reduce the makespan and allocates smallest job to 
fastest resource to reduce the flow time of the schedule.   

In first stage the algorithm allocates m number of jobs similar to 
Max-min i.e.  completion time of all unassigned tasks (1 ≤  j  ≤n)  
on all the available machines (1 ≤  i ≤m)  is used to calculate the 
minimum completion time (MCTi) of task Ti on machine Mi*. 
Then task which gives maximum of MCTi is identified 
T*={max(MCTi) for (1 ≤  i  ≤ m) } and assigned on the machine 
M*. Subsequently the task T* is removed from the list of 
unassigned task and workload of machine M* is updated. In this 

manner m number of jobs are assigned to m number of 
unallocated machines. 

In second stage remaining unassigned jobs are assigned 
alternatively using min-min and max-min method i.e. smallest job 
on fastest resource followed by largest job on fastest resource till 
the list of unassigned jobs get exhausted. 

4.9 Suffrage  
Suffrage for a job is the difference between second minimum 
completion time and first minimum completion time for that job. 
Suffrage method tries to allocate most suffered jobs in terms of 
expected completion time first.  In this method suffrage is 
calculated for all unassigned jobs and the job which has maximum 
suffrage value is assigned to the machine which gives first 

minimum completion time. Then job is removed from unassigned 
job list, machine workload updated and above cycle of job 
allocation repeated till list of unassigned jobs get exhausted. 

4.10 Work Queue (WQ) 
It is a very simple method of job allocation. Jobs are randomly 
selected from the list of unassigned jobs and assigned to the 

machine with minimum workload. Job assignment repeated in 
similar manner  till list of unassigned jobs get exhausted. 

4.11 Relative Cost (RC) 
While assigning jobs relative cost method considers both the load 
balancing of machines and the execution time of jobs on 

machines. Method calculates two parameters static relative cost 

  and dynamic relative cost . Static relative cost is 

computed only once at the start of the method, on the other, the 
dynamic relative cost is computed at the start of each iteration k. 
For job i and machine j  

    (6)

   

    (7) 

At each iteration k, the best job ibest is the one that minimises the 
expression: 
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  (8) 

where:  

mi*=argmin[ completions i,m (k)  | Machines]  

The value of α is fixed to 0.5 for the computational results. 

4.12 Min-max 
Min-max heuristic has two steps for assigning jobs to machines.  

In first step, similar to min-min method, completion time of all 
unassigned tasks (1 ≤  j  ≤ n)  on all the available machines (1 ≤  i  
≤ m)  is used to calculate the minimum completion time (MCTi) 
of task Ti on machine Mi*. In the second step for all tasks ratio of 
minimum execution time (time to execute on fastest machine) to 
its execution time on selected machine Mi* is computed and the 
task which has maximum value pf it is selected for assignment. 
Then job is removed from unassigned job list, machine workload 

updated and above cycle of job allocation repeated till list of 
unassigned jobs get exhausted. 

5. TEST PROBLEM 
For fair comparison of different scheduling methods we used ETC 
model of benchmark simulation experiments by (Braun et al, 
2001) in our study. This model is based on Expected Time to 
Complete (ETC) matrix for 512 tasks and 16 machines. There are 

Table 1 Heterogeneity and consistency combinations in the 
ETC model. 

Heterogeneity Consistency 

Task Machine Consistent In-
consistent 

Semi-
consistent 

high high u_c_hihi u_i_hihi u_s_hihi 

High low u_c_hilo u_i_hilo u_s_hilo 

low high u_c_lohi u_i_lohi u_s_lohi 

low low u_c_lolo u_i_lolo u_s_lolo 

 

Twelve different benchmark instances of ETC matrices (512x16) 

each based on task heterogeneity, machine heterogeneity, and 
consistency. Their twelve combinations are as shown in Table 1. 
Machine heterogeneity represents the variation of execution times 
for a given task across the resources. An environment having 
similar resources will be represented by low machine 
heterogeneity, while high machine heterogeneity represents 
computing resources of different type and power. Task 
heterogeneity represents the degree of variation among the 

execution times of tasks for a given machine. In High task 
heterogeneity  different types of applications are submitted to 
execute in the system, from simple programs to large and complex 
tasks which require large CPU times to be performed.  An ETC 
matrix is considered consistent when, if a machine mi executes 
job t faster than machine mj, then mi executes all the jobs faster 
than mj. Inconsistency means that a machine is faster for some 
jobs and slower for others. An ETC matrix is considered semi-

consistent if it contains a consistent sub-matrix. Instances are 
labeled as u_x_yyzz. u means uniform distribution (used in 
generating the matrix). 

• x means the type of consistency  

(c – consistent, i – inconsistent and s– semi-consistent). 

• yy indicates the heterogeneity of the jobs 

 (hi means high, and lo means low). 

• zz indicates the heterogeneity of the resources  

(hi means high, and lo means low). 

These benchmark instances are considered one of the most 
demanding for the scheduling problems in heterogeneous 
computing environment by the large number of researchers. The 
main references in the literature used these instances in their 
scheduling methods.  

6. COMPUTATIONAL RESULTS 
In this section we present the results obtained for scheduling of 
twelve instances of test problem using the twelve heuristics of 
grid scheduling.   

6.1 Computation Program  
A computer program in C++ language is developed for all 
methods mentioned above which produces respective schedule 
and value of the various objectives. Program is executed on Intel 
(R) Core 2 Duo CPU T5550 @ 1.83 GHz, 1.83 GHz with 2 GB 
RAM and Window Vista operating system. Result obtained are 

discussed as follows.  

6.2 Single Objective Comparison 
Five objective functions are considered for this study. While 
considering one objective function at a time result obtained are as 
follows: 

6.2.1 Makespan 
Out of twelve instances Min-max method gives minimum 
Makespan in ten instances. For two instances of low task 
heterogeneity with consistency Min-Min method gives minimum 

value of Makespan.  

6.2.2 Flow time 
For all twelve instances, Min-Min method gives minimum value 

of flow time. Flow time is calculated by arranging task in 
ascending order of processing time on the assigned machine. 

6.2.3 Resource utilization 
Max-Min method gives best resource utilization for all twelve 

instances. 

6.2.4 Matching proximity 
For all instances best value of matching proximity is given by 
MET method. 

6.2.5 Computation time 
Out of twelve instances WQ method takes minimum  computation  
time in eight instances. For rest of three, one and one instances 
minimum computation time is respectively taken by MET, MCT 
and kPB. Minimum computation time taken by WQ method is 
3921 micro seconds. 

6.3 Many Objective Comparison  
As evident from single objective comparison of heuristic methods 
there is no single method which perform best on all objectives. 
Hence result must be analyzed considering more than one 
objective functions together.   
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6.3.1 Visualisation of objectives  
It is difficult to draw conclusion while simultaneously considering 
result of all different heuristic methods for all twelve instances 
hence geometric mean of objective function values for all twelve 
instances is calculated for result of all heuristic methods.  

This normalized value of geometric mean of all objective function 
values for all heuristic method is shown in Figure 1. 

6.3.2 Non-dominated ranking of methods 
Non-dominated ranking can be performed for different 
combinations of objective functions i.e. by considering all 
objectives as well as by considering less number of objectives. 
We considered total five objective here hence there can be 5C5, 
5C4,

 5C3, and 5C2 combination i.e. total 26 combinations. 

Overall performance of these heuristics is evaluated by finding 
frequency of their attaining different ranks in non dominated 
ranking for total 26 combinations of objective functions and for 

all 12 instances of scheduling problem. In this manner there are 
total 312 (=26X12) non dominated comparisons and method 
getting highest frequency count is the best method. 

Frequency count of ranks of different scheduling heuristics is 

shown in Figure 2. Min-min heuristic method get maximum ( 312 
out of 312) rank 1 frequency count hence it is the best method. At 
second and third place are  MCT and WQ methods with 272 and 
255 rank 1 frequency count respectively. 

6.3.3 Qualitative Comparison 
Qualitative comparison of heuristics using all twelve instances of 
test problem is shown in Table 3.   

• Min-Min, Min-Max and RC give Best quality Makespan for 
all 12 instances while suffrage gives  in 10 instances. 

• Min-Min, and Min-Max give Best quality Flow-time for all 
12 instances while RC gives  in 10 instances. 

• Max-Min, and LJFR-SJFR give Best quality matching 
proximity in 12 and 11instances respectively, while suffrage 
and Min-max in 8 and RC gives  in 7 instances. 

• MET gives Best quality matching proximity for all 12 
instances. 

• Best quality computation time for all 12 instances is given by 
OLB, MET, SA, kPB and WQ. 

6.3.4 Correlation between Objectives 
Values of correlation coefficient between these objectives are give 
in Table 2. Highest positive correlation (0.946) is between 
Makespan and Flow-time and most negative correlation 

coefficient (-0.3396) is between resource utilization and 
computation time. 

Table 2 Correlation between objectives 
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Makespan 0.9460 0.2348 0.3494 -0.1507 

Flow-time 1 0.0951 0.4963 -0.1553 

Resource 
utilization  

1 -0.2682 -0.3396 

Matching 

Proximity   
1 -0.2379 

Time 
   

1 

7. CONCLUSION  
There is no single heuristic that is excellent in satisfying fully all 
the conflicting expectations of different class of stakeholders of 
computational grid. Computation time taken by heuristics has 
most negative correlation with other objectives of gird scheduling 

which suggests to get better schedule more computation time is 
needed by the heuristics.  Heuristics can be segregated into two 
groups. One group is suitable for immediate mode consisting 
OLB, MCT, MET, SA, kPB, and WQ and another is suitable for 
batch mode scheduling consisting Max-Min, LJFR-SJFR, 
Suffrage, RC, Min-Min, and Min-Max.  

Contrary to belief, there is harmony in objectives of minimum 
makespan and minimum flow time. Heuristics giving good 
makespan also provide comparably good flow-time. 

Min-min emerges as leader providing best quality of service as 
well as makespan but inferior resource utilisation.  Min-max gives 
best makespan, resource utilisation but lacks in flow time. 
Qualitative comparison of heuristics suggests Min-max as the best 
heuristics. 
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Figure 1 : Normalized Many-Objectives of schedules generated by different heuristics for geometric mean of all instances 

of problem represented using 3D Bar Chart 
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Figure 2 : Frequency count of ranks of scheduling heuristics 
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Table 3 : Qualitative Comparison 

 

  
OLB MCT MET SA kPB WQ Max-

Min 
LJFR-
SJFR 

Suffrage Min-
Min 

Min-
Max 

RC 

B
es

t 

Makespan 0 3 0 2 5 1 2 2 10 12 12 12 

Flow time 0 0 4 1 0 0 0 0 6 12 12 10 

Resource Utilisation 2 3 0 0 0 3 12 11 8 0 8 7 

Matching Proximity 0 0 12 1 1 0 0 0 4 4 4 4 

Computation Time  12 11 12 12 12 12 0 0 0 0 0 0 

Total 14 17 28 16 18 16 14 13 28 28 36 33 

G
o
o
d
 

Makespan 2 9 4 10 7 1 3 5 2 0 0 0 

Flow time 2 6 0 7 6 2 2 4 4 0 0 2 

Resource Utilisation 9 7 0 4 6 8 0 1 2 7 4 2 

Matching Proximity 0 4 0 3 3 0 0 0 2 4 2 2 

Computation Time  0 1 0 0 0 0 0 0 0 0 0 0 

Total 13 27 4 24 22 11 5 10 10 11 6 6 

F
ai

r 

Makespan 2 0 0 0 0 2 4 3 0 0 0 0 

Flow time 0 5 0 3 4 0 4 7 2 0 0 0 

Resource Utilisation 1 2 0 3 6 0 0 0 2 1 0 1 

Matching Proximity 0 2 0 2 2 0 2 2 2 0 2 2 

Computation Time  0 0 0 0 0 0 0 0 0 0 0 0 

Total 3 9 0 8 12 2 10 12 6 1 2 3 

P
o
o
r 

Makespan 8 0 8 0 0 8 3 2 0 0 0 0 

Flow time 10 1 8 1 2 10 6 1 0 0 0 0 

Resource Utilisation 0 0 12 5 0 1 0 0 0 4 0 2 

Matching Proximity 12 6 0 6 6 12 10 10 4 4 4 4 

Computation Time  0 0 0 0 0 0 12 12 12 12 12 12 

Total 30 7 28 12 8 31 31 25 16 20 16 18 
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Figure 3 : Normalized Many-Objectives of schedules generated by different heuristics for geometric mean of all instances  

of problem represented using Radar Chart 
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