
International Journal of Computer Applications (0975 – 8887)

Volume 13– No.8, January 2011

40

Algorithm for Web Service Composition using

Multi-Agents

G. Vadivelou
Research Scholar, Department of

Computer Science and Engineering
Bharathiyar University, Coimbatore,

Tamil Nadu, India

E.IIavarasan
Department of Computer Science and

Engineering
Pondicherry Engineering College,

Pondicherry, India

 S. Prasanna
 Department of Computer Science and

Engineering
 Pondicherry Engineering College,

Pondicherry, India

ABSTRACT

The term Web Services describes a standardized way of integrating

Web-based applications using the XML, SOAP, WSDL and UDDI

open standards over an Internet protocol backbone. Merely

providing services to the users in the heterogeneous distributed

environments, service oriented systems are very important. Most

of the time, the individual services do not have the sufficient

conditions to provide any services to the users. In order to resolve

the aforementioned problem, one may compose several individual

services together. The proposed method currently applied to

ensure the robustness and dependability of Web Services

compositions do not effectively map to more open dynamic

environments. The proposed approach has a new multi-layer Web

Services composition model based on Multi-Agent System. We

propose a different self-adaptive mechanisms corresponding to

different environment’s evolutions to improve the reliability of

Web Services composition efficiently. Also we introduce an

algorithm for dynamic approach to select the best composition.

This composition is selected based on the quality and the

compose-ability of participated services. Advantage of the

proposed approach is to recognize the feasibility of the

composition process at any point of execution and produce better

throughput and a less consumption of memory to select

composition of services dynamically.

General Terms: Information systems, Algorithm.

Keywords: Agents, Web Service, Web Service Composition

1. INTRODUCTION
Web Services are considered as self-contained, self describing,

modular applications that can be published, located, and invoked

across the Web. Amount of products and services available now

on the Web increases dramatically and goes beyond user’s ability to

analyze them efficiently. At the same time the number of potential

customers available via the Internet also increases significantly

and starts to be beyond service providers’ ability to perform

efficient targeted marketing. Another important issue related to

the development of Web services is their integration and

composition. Recent progress in the field of Web Services has made

it practically possible to publish, locate, and invoke applications

across the Web. This is a reason why more and more companies and

organizations now implement their core business and outsource

other application services over the Internet. In particular, if no

single Web service can satisfy the functionality required by a user,

there should be a possibility to combine existing services together

in order to fulfill the request. The challenge is that Web

services can be created and updated on the fly and it is

often beyond human capabilities to analyze the required

services and compose them manually. The complexity of selecting

and composing Web services descends from the following

two sources [1]: 1) it is not always easy to define selection criteria

for a Web Service; 2) Web services can be developed by different

organizations, which provide different offers, so, the ability

of efficient integration of possibly heterogeneous services on the

Web becomes a complex problem (especially for dynamic

composition during runtime).

The remainder of this paper is organized as follows. In the next

section, we will introduce the basic concepts such as Web Service

and Agents [2, 3]. Section III describes our related work. Section

IV discusses about proposed frame work. Section V discusses

about the implementation details and finally, the paper concludes

with the future work in Section VI.

2. BACKGROUND

2.1 Web service
A Web Service is an accessible application that other

applications and humans as well, can automatically discover

and invoke. An application is a Web Service if it is [1]: (i)

independent as much as possible from specific platforms and

computing paradigms; (ii) developed mainly for inter

organizational situations rather than for intra-organizational

situations; and (iii) easily compos able (i.e., its composition with

other Web services does not require the development of complex

adapters)

Web Services are, in practice, transient and stateless processes that

exist only during service execution, which is triggered by a

request coming from a consumer, or client. Services are

instantiated to perform specific tasks, thus facilitating scalable,

concurrent service provision.[2, 3] The design of a Web Service is

usually defined as a clearly articulated workflow, for the sake of

reliability and quality of service.

2.2 Agents
An Agent is a piece of software that acts autonomously to

undertake tasks on behalf of users [4, 5]. The design of many

Agents is based on the approach that the user only needs to

specify a high-level goal instead of issuing explicit instructions,

leaving the how and when decisions to the agent. An SA

exhibits a number of features that make it different from other

traditional components [6] including autonomy, goal orientation,

collaboration, edibility, self-starting, temporal continuity, character,

communication, adaptation, and mobility.

Agents are one of the important contributions of Artificial

International Journal of Computer Applications (0975 – 8887)

Volume 13– No.8, January 2011

41

Intelligence about the nature of computing [4, 7, 8] . Agents are

software entities which interact with an environment, and are

subject to modify themselves and evolve according to both

external and internal stimuli, the latter due to the proactive and

deliberative capabilities of agents themselves. Agents are

problem-solvers and may have reasoning abilities[9, 10, 11]:

therefore, they react how and when they deem it appropriate.

Reaction may imply performing actions to affect the

environment. Agents are proactive in the sense that, according to

past experience and internal reasoning, they are able take

initiatives that may imply performing actions, but also setting an

objective (or “goal”) and constructing and executing a plan to

achieve that goal. Agents work is usually based upon a

background knowledge base composed of “beliefs” [12, 13,

14]. Agents can be to some extent “intelligent”, which from an

observer’s point of view means that agents are able to exhibit a

flexible and adaptive behavior. As a pretty natural consequence

of previously-mentioned features agents are autonomous, i.e.,

they are able to inhabit an environment and control their own

behavior independently of external influence. Autonomous agents

are typically state full and persistent.

2.3 Web Service and Composition
Normally, service providers advertise their service in a common

market. Some of them claim similar functionality, which are

called semantically equivalent. When a composition process is

executed, how to select the best suitable one from several

candidates is important. It is envisaged that some of them are not

suitable judging by QoS. The service composition process must

make balance from different perspective. It is useful to make the

composition process transparent to requesters. Typically, there are

various different composition candidates. A good composition

model should be efficient to solve the requirement by

automatically composing service advertised by different providers.

Thus, in this paper, Web Service Composition can be seen as a

process to find a new service S, which consists of a set of

component web services {S1, S2, S3…Sn}. Each component web

service is mapped to a set of real web services {Si1, Si2, Si3…Sim},

which we can say are semantically equivalent. Figure 1 is an

example of these four relationships, where S1, S2 … S6 are

component web services and S21, S22are real web services that can

be invoked at run-time.

Figure 1: Web service composition

3. RELATED WORK
Service composition has been the subject of many research

projects, such as the Ninja project [3] and SAHARA [8].which

includes specifications for WSDL, SOAP and other protocols that

may be used to describe, access, execute, and discover services on

the Web. There are several works on incorporating agents into

Web Service systems. In particular, Gibbins et al [2] demonstrated

usage of DAML-S for Web Services descriptions within agents.

Another step towards incorporating Web Services into agents is

proposed by Ardissono et al [1]. Since their focus has been set to

non-symbolic negotiation, their work could be seen as a

complementary part to our work, where we focus on logic-based

Web Services Composition. Sirin et al [9] presents a semi-

automatic method for Web Services Composition. The main

difference between our approach and the above-mentioned methods

is that we propose a unified solution to Web Services Composition

problem.

Zakaria Maamar [14] develops a service composition framework, in

which multiple-agent-system that composes of composition agent,

service agent and service instance agent is the engine of service

composition. During the composition process, software agents

engage in conversations with their peers to agree on the Web

Services that participate in this process. Conversations between

agents take into account the execution context of the Web

Services. But this paper doesn’t consider context aware service.

In [6, pg 575], Marinescu discusses the use of the Bond agent

architecture to enact a workflow description captured in XPDL.

Most closely related to our vision of using contemporary BPM

tools and Web services for multiple agent system design is the

work described in [5]. In this paper, Korhonen, et al. describes

the creation of a workflow ontology that is used to describe both

agents and Web services. They hope to build a workflow

enactment mechanism that can utilize the ontology to bridge the

communications gap between agents and Web Services.

4. PROPOSED FRAMEWORK
We proposed a framework to support negotiation during QoS

aware Web Service Composition. We add two layers between

service requirement and web service candidates, as shown in

figure 6. In the first layer, each Web Service candidate is linked to a

home norm base, which can be used by home agent to negotiate

among other home agents. Norms are a set of rules and

regulations, an under-lying protocol governing the agent

communications network and agents complex behavior.

Norms revolves around agents, which influences the agents to

execute a series of concerted actions to achieve a particular goal.

And the second layer is composition algorithm which links with the

home agent for choosing the best services for the composition.

Figure 2: Proposed frame work

International Journal of Computer Applications (0975 – 8887)

Volume 13– No.8, January 2011

42

4.1 Home Agent

The main function of discovery agent can be divided into two

modules:

Service equalizer model: Service matching is based on the

similarity between service descriptions that mainly contain service

name and other related information.

Service selection module: By the use of selection algorithm,

discovery Agent selects one optimum service or a group of

services.

Figure 3: Home agent models

4.2 Service Agent

Service Agent has four function modules:

Agent conversation: Agent conversation involves two parts of

conversation. One is the conversation between service agent and

composition agent. The other is the one between service agents.

Access control: Controlling other agent’s access to the service.

Service invoker: Invoking the method of Web Services.

Service adaptation: In the process of service invoking, service

agent regulates the methods of Web Service according service

context.

Figure 4: Service agent model

4.3 Coordinating Agent

The main function of composition agent is divided into four

sub-modules:

Divergence in Flow: The service composition flow is divided into

some sub-flows that are performed by service agent.

Agent conversation: Service Agents that used to perform sub-

flow are determined by the conversation of composition agent.

Execution: The module is responsible for controlling and

regulating service composition.

Result Collection: Composing agent is responsible for collecting

the result of service composition and returns the result to user

application.

Figure 5: Coordinating agent model

4) Meta norm repository: Meta-norms are a special type of norms,

which are same as normal norms but service agent use them to

guide home agent’s internal norm update.

4.4 Composing of Services

Service oriented systems are functioning based on services.

Algorithm for Composition

Past = NULL; Now = NULL;

Create_node(nb, B); Create_node(nf, E);

Foreach n in Tasks do {

 Past = Now; Now = get_cm(TRn);

 Foreach CM in Now do {

 If n = 1 then CMP = {B}

 else CMP= match (CM, Past);

 if CMP is not NULL then {

 foreach s in CM do {

 create_node(ns, s);

 foreach sp in CMP do add_edge(nsp, ns, Q(s));

 if n= k – 1 then

 add_edge(ns, nf, 0);

 }

 remove(CMP, Past);

 } else

 remove(CM, Now);

 }

if Now is NULL then

 throw(“It is not feasible!”);

}

International Journal of Computer Applications (0975 – 8887)

Volume 13– No.8, January 2011

43

Composing of the services can make a value added service. These

services provide service to the clients (A person or a software

module that gets benefits from services of servers) [7]. A client

may find its appropriate services from the metadata information of

the services. Of course, by increasing the number of services and

by expanding the space of system environment, it is better to

register the services through a service broker. Moreover, having a

more speed and a better property of services are the reasons that a

client may use a service broker. Each service has three properties

as follows: the quality, the interface and the functionality. The

quality of each service depends on functional and non-functional

requirements. In a service, finding a proper output is called the

functional requirements. While the speed of the computation of

finding this output is called a non-functional requirement. Based

on some criteria, a client gives score to each satisfied

requirements. As the result, this client may accept the immediate

first output or wait for a longer time to find a more proper output.

In order to compare the quality of service, we need to transfer the

quality of the service into the quantity values. We measure the

total quality of service (QoS) by using the total points that a client

assigns to each satisfied requirement [7]. We calculate this

quantity (QoS) as follows:

 QoS (s) = i * Scorei(s)

In the above formula, client assigns score wi to the ith satisfied

requirement and service s satisfies this requirement with quality

Scorei. Interface is another property of the services. Each service

has two types of interfaces: Input and output. Input interfaces

indicate the input parameters and output interfaces indicate the

output parameters. Two services are called match if output

parameters of one of them is the same as the input parameters of

the others. A community is a set of services, which are matched

together. In order to increase the usability of services most of the

time we design services in such a way that the functionality

property of service could solve the problems, which are simple and

basic. Software developers select the proper composition of

services to solve problems that are more complex. By executing

each of these compositions through a specific process, they can

reach to the solution. This process is determined during execution

plan associated to the problem [7].

4.5 Web Service Composition using Graph

We introduce a method that considers each service as a graph

node. With attention to order of tasks in execution plan, we

connect nodes as the edge of the graph. After we create the graph,

by searching in the existed paths we can find the best path. The set

of services of that path declares as the best composition. All the

proper services for each task in the execution plan are requested

from the service broker. The service broker presents these services

in the form of different communities. Figure 6 shows an instance

of the execution plan. Tasks are presented as ellipses on the top of

this figure and the related candidate services are shown in column

under each task. Services in a community are besieged in the same

rectangles. As mentioned earlier, we create the nodes of the graph

from some of the services. To connect these nodes we use the

weighted directed edges of the graph. In Figure 6, the label near

each edge is the weight of that edge respectively.

 Algorithm for optimal composition introduces the graph

creation operations completely. In this algorithm and for each task,

first we receive all candidate services. Then we insert these

services into a list in form of the sets of the same community

services. We name this list as Now list (For example, the broker

introduces services s31, s32, s33 for task t3 in Figure 6).

Figure 6: Execution plan and candidate services

In the next step, we study each community in the created list to

figure out whether it has any matched services in the list of

previous task (Which is called Past) or not. If such any services

exist (e.g. community of s31), we connect all services in the two

communities together two-by-two (e.g. edges (s21, s31) and (s22,

s31)). Then we assign the quality of destination service (that is in

the Now list) to these new edges. In order to avoid the superfluous

searches, we delete that community from the Past list. If we cannot

find any proper community for a service in the list of previous task

(e.g. the community that has services s42 and s43 in Figure 6), we

delete that community from the list of studying task. The reason

for this deletion is that we do not need to search this community

again, when we start studying the next task. These deletions lead

decreasing of additional searches so that we can create and search

graph with a better speed.

 In summary, at the beginning of the execution for task n,

the Now list has all candidate services related to this list.

Moreover, the Past list has services from task n-1 that has at least

one matched service in the services of task n-2.1 For example, if

we are at the beginning of the execution for task t3, the Now list

has services s31, s32 and s33 and the Past list has services s21, s22

and s23. (at this point of execution, we do not know any services

related to the next tasks). Hence, we do not create any graph node

from services that have not any matched services in the previous

task. This operation leads to the less memory consumption as well.

After executing the algorithm, the final graph has all drawn edges

and services in Figure 6 (as nodes) except services s24, s32, s42

and s43. In some situation, however, we may not be able to create

any composed service from the services in the system

environment. In this case, the Now list would be empty at the end

of the execution for that task. Therefore, we may inform the user

that the composition is not feasible and then we terminate the

execution. In the Algorithm, each function is described with these

operations:

 create_node (nodeName, service): Creates a graph node

with assigned service and called it as nodeName.

 get_cm (TRn): It requests all services from service broker

that can do the task n. Service broker places all that

services as a set of communities of services and deliver

to the requester.

 Match (CM, Past): It searches in the Past list and return

the community that is matched with CM. if there are no

International Journal of Computer Applications (0975 – 8887)

Volume 13– No.8, January 2011

44

such community, returns NULL as the output.

 add_edge(node1,node2,Q): Connects a directed edge from

node1 to node2 and determines its weight as Q.

 remove (community, list): Removes the community from

the list.

 throw(message): Terminates execution of the algorithm

with showing proper message to the user.

5. IMPLEMENTATION AND RESULTS

The proposed algorithm has been implemented in java

using Intel Pentium IV processor with 256 MB RAM and

operating system Windows XP. In addition to the all

improvements that we mentioned in the earlier sections, the

proposed approach does huge improvements on the time and the

memory consumption compare to the other methods in the

literature (e.g. [15] and [16]). As an experimental evaluation, we

implement both the proposed approach in this paper and the latest

work in this area ([14]). To do this comparison, for both of

approaches, we calculate the time and the memory consumption

with the same input at the execution time. In order to compare time

and memory consumption of these approaches, we may consider

the varieties in the number of tasks, the number of services and the

number of types of service interfaces during the time. The time of

algorithm execution shows the time consuming and the number of

nodes in the graph which determines the memory consumption.

We calculate these two values for different executions with

considering the variation of one of those varieties. These results

are illustrated in Figure 8 to Figure 10. Chart "a" in each figure

shows the execution times of two algorithms. Chart "b" shows the

required memory for their execution respectively; it means that in

each chart, the top curve diagram is related to the latest method in

the literature and the bottom curve is related to the proposed

approach in this paper (Figure 7 shows the legend of these charts).

Figure 7: Legend of the charts

In Figure 8, we consider an execution plan with twenty tasks in

which the number of candidate services is variable. We randomly

select the type of interface for each service from ten available

types.

Figure 8: variety of number of candidate services
In Figure 9, the number of tasks is variable. For each task, we

consider fifty candidate services. These candidates choose their

interfaces from ten available types.

Figure 9: variety of number of tasks

In Figure 10, we consider an execution plan with twenty tasks and

fifty candidate services. Interface of each service is selected from a

variety number of types.

International Journal of Computer Applications (0975 – 8887)

Volume 13– No.8, January 2011

45

Figure 10: variety of type of interfaces

6. CONCLUSION

We propose a self-adaptive Web Services Composition model based

on Multi-Agent Systems and an algorithm for selecting an optimal

composition of services dynamically. Our model aims to support the

design, deployment and maintenance of distributed systems by

allowing the combination, reorganization and adaptation of services.

We encapsulate the Web Services with Agents to make them be more

autonomy, reliability and robustness in response to the dynamic

environments. The algorithm, we propose first create a graph from

candidate services based on the execution plan (with attention to

their interfaces). Then we label the best path in the graph as the

optimum composed service. Considering variety of service

interfaces makes outputs of this algorithm more close to the real life

situation. This algorithm shows the feasibility of the composition

process at any point of the execution. According to the

implementation result, the experimental evaluations show this

algorithm has a better throughput and use the less memory

consumption compare with other similar approaches. The speedup in

the creation and the searching of graph leads to the overall speedup

of the execution. The aforementioned improvements decrease the

waste of the resources.

REFERENCES

[1] L.Ardissono, A.Goy and G.Petrone. “Enabling conversations

with web services”. Proc. of the 2nd Int.Conf on Autonomous

Agents and Multiple agent Systems, 2003, Melbourne,

pp.819-826.

[2] N.Gibbins, S. Haris and N.Shadbolt. “Agent- Based Semantic

Web Services”. In Proceedings of the 12th Int. WWW Conf.,

WWW2003, Budapest, Hungary, 2003, ACM Press, 2003,

pp.710-717.

[3] Gribble, S.D.Welsh, M.von Behren, R.Brewer,E.A.

Culler, D.Borisov, N.Czerwinski, S.Gummadi, R.Hill,

J.,Joseph, A.D.,Katz, R.H.,Mao, Z., Ross, S., and Zhao,

B.“The Ninja Architecture for Robust Internet- Scale Systems

and Services”, Special Issue of Computer Networks on

Pervasive Computing, March 2001.

[4] N. Jennings, K. Sycara, and M. Wooldridge. “A Roadmap of

Agent Research and Development. Autonomous Agents and

Multiple-Agent Systems”, 1(1):738, 1998.

[5] J. Korhonen, L. Pajunen and J. Puustijarvi, "Using Web

Services and Workflow Ontology in Multiple-Agent

Systems", presented at Workshop on Ontology’s for

Multiple-Agent Systems, Saguenay, Spain, 2002.

[6] D.C. Marinescu, Internet-based workflow management:

toward semantic web. New York; Wiley- Interscience, 2002

[7] McIlraith, S.,Son T., Zeng, H.“Semantic Web Services”. IEEE

Intelligent Systems, Special Issue on the Semantic Web,

Volume 16, No. 2, pp. 46-53, March/April, 2001.

[8] Raman, B., Agarwal, S., Chen,Y., Caesar, M., Cui, W.,

Johansson, P., Lai, K. Lavian, T.,Machiraju, S., Mao, Z.M.,

Porter, G.,Roscoe, T., Seshadr. “The SAHARA Model for

Service Composition Across Multiple Providers”, Pervasive

Computing, August 2002 Lecture Notes in Computer

Science LNCS 2414, Springer, 2002.

[9] E. Sirin and J. Hendler and B. Persia, “Semi automatic

Composition of Web Services using Semantic Descriptions”,

Workshop on Web Services: Modeling, Architecture

and Infrastructure in conjunction with ICEIS2003.

[10] Stefania Costantini1, “Agents and Web Services”, Dip. Di

Informatica, Universit`a di L’Aquila, Coppito 67100,

L’Aquila, Italy 10.

[11] S. Thakkar et al. “Dynamically composing web services

from on-line sources”. In Proceeding of 2002 AAAI

Workshop on Intelligent Service Integration, Edmonton,

Alberta, Canada, 2002.

[12] Wang, Jiying, “Information Discovery, Extraction and

Integration for the Hidden Web”, Proc. VLDB PhD

Workshop, 2003.

[13] Zakaria Maamar “Interleaving Web Services Composition

and Execution Using Software Agents and Delegation”.

College of Information Systems Zayed University Po Box

19282, Dubai, U.A.E.

[14] Zakaria Maamar, Soraya Kouadri Mostéfaoui, and

Hamdi Yahyaoui, “Toward an agent-based and context-

oriented approach for Web services composition”, IEEE

Trans on Knowledge and Data Engineering, Vol 17, No. 5,

PP. 686-697, 2005.

[15] Gao, Yan, et al., "Optimal Web Services Selection Using

Dynamic Programming." s.l. : Proceedings of the 11th IEEE

Symposium on Computers and Communications (ISCC'06) ,

2006.

[16] Gao, Yan, et al., "Optimal Selection of Web Services for

Composition Based on Interface-Matching and Weighted

Multistage Graph." s.l. : Sixth International Conference on

Parallel and Distributed Computing, Applications and

Technologies (PDCAT’05) IEEE, 2005.

