
International Journal of Computer Applications (0975 – 8887)
Volume 14– No.3, January 2011

32

Implementation and Experimentation of Producer-

Consumer Synchronization Problem

Syed Nasir Mehmood, Nazleeni Haron

Universiti Teknologi PETRONAS
Bandar Seri Iskandar

Perak, Malaysia

 Vaqar Akhtar, Younus Javed,

National University of Science & Technology
College of Electrical & Mechanical Engineering

Pakistan

ABSTRACT
This paper presents the design and implementation of a
simulator that allows user to study producer-consumer
synchronization problem in three different contexts: simple
producer-consumer problem, producer-consumer problem in a

single processor system and producer-consumer problem in
multi-processing system. The main contribution of our work
is the facility to run the simulation in a multi-processors
environment. This has been deemed appropriate since most of
the current applications are distributed in nature and run in
multi-processing environment. Additionally, the features
offered by the simulator enables user to analyze and evaluate
various synchronization problems in a repeatable and

controllable environment. The experimental results are
presented to show the viability of our proposed simulator.

General Terms

Simulation, Synchronization

Keywords

Bounded Buffer Problem, Producer Consumer, Single
Processor, Multi- Processor.

1. INTRODUCTION
Producer-consumer problem is one classical example of
bounder buffer synchronization problems. The
synchronization is needed in order to ensure that the producer
stops producing when the buffer is full and the consumer
stops removing items from the buffer if it is empty. The
variations of producer-consumer problem can be implemented
in different type of applications [1], [2], [3], [4] and can be

run on both single and multi-processors systems [5]. Due to
its importance, many researchers have studied this problem
and normally simulation is used in order to visualize the
behavior of the problem [2], [6]. However, most of these
simulators only allow user to experiment in the context of a
single producer and a single consumer. To address this
limitation, we propose a simulator that allows user to study
producer-consumer synchronization problem in three different
contexts such as simple producer-consumer problem,

producer-consumer problem in a single processor system and
producer-consumer problem in multi-processing system. This
has been deemed appropriate since most of the current
applications are distributed in nature and run in multi-
processing environment. In addition, users can carry out
comparative evaluation among different contexts using the
simulator as to gain insights on the best model to use in
certain situations. The simulator has been developed as a

comprehensive software package which can run self-driven
simulation, generates useful data and provides a user-friendly
environment. Software design strategy is function-oriented
and design is modular in nature. The system is designed to run
on Windows and is written using Java.

This paper presents the implementation and experimental
results of the proposed simulator for producer-consumer
problem in three aforementioned contexts. In the next section,
we describe the general producer-consumer problem. Section
3 presents the models of the three different contexts. Section 4
describes their implementations and section 5 provides the
experimental results for each context and outlines some
discussions. Section 6 concludes the paper.

2. PRODUCER-CONSUMER PROBLEM
In producer-consumer problem, there are two types of process
involved: producer and consumer who are sharing a fixed size
buffer [3]. The role of producer is to put the item one a time in
the buffer and the role of consumer is to retrieve the item from

the buffer. The problem is to make sure that the producer will
not try to add the item once the buffer is full and that the
consumer will not try to remove the item from an empty
buffer [3].

According to [2], the normal behavior of this problem are (i)
Random arrival of petitions to put item in the buffer; (ii) One
consumer that immediately after getting an information from
the buffer intends to get another one; (iii) Buffer of defined

and finite size; (iv) Consumer waits when the buffer is empty;
(v) Producer waits when the buffer is full; (vi) Second and
subsequent productions wait when the customer is writing or
held up.

3. PRODUCER-CONSUMER MODELS
This section presents the different models of the producer-
consumer problem that can be simulated by the user.

3.1 Simple Producer-Consumer Problem
This problem describes one producer and one consumer
sharing the same finite buffer. Producer produces items and

place items in the buffer while consumer consumes items
from the buffer.

3.2 Producer-Consumer Problem in Single

Processor Environment
This model is the advanced form of the first model. In the
first model, producer produces and places items in the buffer
at random basis. Consumer simply consumes items from the
buffer without acknowledging whether it is meant for them or
not. But in this model, producer is producing items for the
specific consumer and only that consumer is given access to
that item. When that consumer is free, it will consume the

items from the buffer. This module of the simulator works for
single processor environment.

International Journal of Computer Applications (0975 – 8887)
Volume 14– No.3, January 2011

33

3.3 Producer-Consumer Problem in

Multi-Processor Environment
This model is designed for multi-processor environment.
Parallel processing technique has been employed in this
module to enable N number of producers and consumers
executing at the same time. This is to ensure that resources are
fully optimized. In this model, producers can produce

items/data for specific consumers and only that consumer can
consume those items/data.

4. SIMULATOR DESIGN AND

IMPLEMENTATION

4.1 Class Diagram
This section provides details on fundamental classes of the
simulator, which are the building blocks of the simulator. The
relationship among the classes is depicted in Figure 1.

Fig 1: Simulator Classes

4.1.1 ProducerConsumerApplet Class
This is the main class of a Java applet file for the simulator.
The GUI of this applet contains three parts: animation canvas,
message canvas and a button panel. The animation canvas is
where the producer/consumer animation is displayed. The

message canvas is where the status of producers and
consumers are displayed. The button panel has six basic
buttons for the users to use while simulating the problems.
The user also can select the number of the buffer, the number
of producers and the number of consumers. Unless the user
selects different values, the default number of buffer is 10,
and default number of the producers and consumers are two.

4.1.2 IntQueue Class
This class contains the control of execution of the producer
and consumer. It provides the bounded buffer of size 10.
Producer and consumer call the enqueue and dequeue
methods of this class to access the shared buffer. Enqueue

method is used to place items in the buffer while dequeue is to
remove the items from the buffer.

4.1.3 Producer Class
Producer's main activity is to call the enqueue method in
IntQueue class. This class is inherited from the thread class
and the run method of this class performs the major
functionality. This method will start a loop which will
continuously produce the items. The item value is produced
by calling the built in random method. Then this method calls
the enqueue method of the IntQueue class. This will place the
produced item on the queue. Then this method also calls the

updateTime method of MessageCanvas class to update the
time on main canvas. This method also appends the produced
item in the message window.

4.1.4 Consumer Class
Consumer's main activity is to call the dequeue method in
IntQueue class. This class is also inherited from the thread
class and the run method of this class performs the major
functionality. This method will start a loop which will
continuously check the need for consuming by calling the
getConsmerSel method. If it needs consuming operation then
it will call the dequeue method of IntQueue class. Then this

method also appends message in the message window that an
item is consumed and also display on the canvas board.

4.1.5 MessageCanvas Class
This class provides message canvas for the applet GUI. It will
print the statuses of producers and consumers on the GUI. All
of the other classes use the methods of this class to display the
messages on the canvas.

4.2 Simulator Options and Features
The simulator allows user to explore the three different
models visually through the use of 2D graphics. The menu
system will allow the user to choose the desired options. A
user will be provided with the following options and features
of the simulator:

 Producer Process.

 Consumer Process

 Ability to change number of CPUs

 Ability to change the size of the buffer. (Maximum of: 20

slots and a minimum of: 5 slot)

 Ability to adjust the speed of the simulation.

 Ability to change the status of each of the processes even
while the simulation is executing.

 Nine buttons are provided: Start, Stop, Pause, Continue,
Faster, Slower and Save:
─ Start Button: Will activate the simulation and start the

process(s) execution.
─ Stop Button: Will completely stop the simulation. This

should happen until all the locks are released. Processes
should be terminated naturally.

─ Pause Button: Will pause the simulation
─ Continue Button: Will resume the simulation after any

pause
─ Faster Button: Will increase the speed of the simulation

─ Slower Button: Will decrease the speed of the
simulation

─ Save Button: Will save the performance parameters in
word/excel format

─ Pause Producer/Consumer : Will pause any chosen
producer or customer

─ Resume Producer/Consumer : Will resume the
simulation of chosen producer or consumer

 Messages to the user:
─ When the producer is the only process active in the

simulation. (i.e. when the buffer is filled completely, a

message will be displayed informing the user that a
deadlock has occurred and that the Consumer must be
added for the deadlock to be removed).

─ When the Consumer is the only process active in the
simulation. (i.e. when the buffer is completely empty, a
message will be displayed informing the user that a
deadlock has occurred and that the Producer will be
added for the deadlock to be removed).

─ The simulation cannot start unless a buffer exists.

ProducerConsumerApplet Producer

Consumer

MessageCanvas

sS

IntQueue

International Journal of Computer Applications (0975 – 8887)
Volume 14– No.3, January 2011

34

4.3 Modes of Operations
The simulator can be run in 3 different modes as

follows:

4.3.1 Simple Producer Consumer
In this mode, the simulation uses only one CPU and the rest of
the parameters such as Buffer Size, Number of Producers and
Consumers must be given by the user. The user interface for
this mode is as shown in Figure 2.

Figure 2 displays a scenario where a user selects buffer size

ten, chooses three producers and consumers respectively and
clicks on START button. Producers P1, P2 and P3 start
producing items and consumers C1, C2 and C3 start
consuming items produced by the producers. A circular buffer
has been maintained. Two logical pointers have been shown,
In and Out. In pointer points to the position where item is to
be placed where Out pointer points to the position from where
item is to be removed. Simulator also shows the status of

buffer during execution. When buffer becomes full it gives a
message “Buffer Status: Full” and in case of empty buffer it
gives a message “Buffer Status: Empty”.

User may also interact with the simulation at run time as to
attain information such as buffer size, empty slots, available
items, status of each producer and each consumer. A user may
pause or resume any producer or any consumer at any instant

during execution of simulator. Initially all producers and
consumers are in sleeping state. When buffer becomes full,
then producer moves in waiting state. When buffer becomes
empty then it is the consumer’s turn to be in waiting state.
Sleeping state and waiting states are highlighted with yellow

color. Active/running states of producers and consumers are
represented with blue color. Pause states of
producers/consumers are shown with red color.

4.3.2 Producer-Consumer Problem in Single

Processor Environment
All options as discussed in the first mode are also available in
this mode. However, additional information is available in this

mode and as shown in Figure 3. In this mode, the status for
each producer is added with information on the corresponding
consumer who is expecting the item. Figure 3 illustrates a
scenario where two producers (P1 and P2) are producing
items for two consumers (C1 and C2) with a shared buffer of
size ten.

The simulator will also display the information on the
producer-consumer activities throughout the simulation. User

may save the complete history for later analytical use in Word
or Excel format. Figure 4 shows example of simulation
activities saved in Word format. In addition, the simulator
also captures the elapsed time that can be used to measure the
throughput of the system.

Fig 2: Interface for Simple Producer-Consumer Simulation

International Journal of Computer Applications (0975 – 8887)
Volume 14– No.3, January 2011

35

Fig 3: Interface for Producer-Consumer Simulation in a Single Environment

Fig 1: Sample of simulation activities in Microsoft Word format

Fig 5: Interface for Producer-Consumer Simulation in Multi-Processor Environment

International Journal of Computer Applications (0975 – 8887)
Volume 14– No.3, January 2011

36

4.3.3 Producer-Consumer Problem in Multi-

Processor Environment
In this mode, a user is given option to select number of CPUs
in addition to pre-mentioned options. A user may run
simulator with different number of CPUs and can watch the
performance of implemented producer consumer algorithm. A
user is given an option “SAVE” to save the simulation
history. A user may record the performance parameters in
Word format as well in Excel format.
Figure 5 displays a working simulator running this mode for a
scenario of three producers and consumers using two CPUs.

5. EXPERIMENTAL RESULTS
This section presents the experiments that have been carried
out to evaluate the efficiency of the simulator in simulating
the different contexts of producer-consumer synchronization
problem. We have performed a series of experiments by

varying the input parameters as to study the following:

5.1.1 Relationship between Simulator Output and

Elapsed Time
This experiment is aimed at quantifying the effect of elapsed
time on the number of items produced and consumed. It is
also meant to see the effects of elapsed time for the producer-
consumer problem in single processor and multi-processor
environments. For a single processor environment, we run
three set of experiments with the following constant input
parameters: three producers, three consumers, buffer size 10
and one CPU. We varied the elapsed time for each
experiment. As for multi-processors environment, we have

kept the same value of parameters except for number of
CPUs. Figure 6 depicts the sample result of this experiment
for three different elapsed time; 20, 40 and 60 seconds. The
results attest that elapsed time have significant effects of
number of items produced and consumed in both type of
environments.

Fig 6: Simulation results for relationship between items produced/consumed and elapsed time for single and multi-processors

environments

Fig 7: Simulation results for relationship between items produced/ consumed and number of CPUs

0

20

40

60

80

100

120

140

20 40 60

It
em

s
P

ro
d

u
ce

d
/C

o
n

su
m

e
d

Elapsed Time (secs)

CPU = 3

CPU = 1

No of Producers =3
No of Consumers = 3
Buffer Size = 10

0
5

10
15
20
25
30
35
40

1 2 3

N
o

 o
f

It
em

s

No of CPUs

Item Consumed

Item Produced

No of Producers =3
No of Consumers = 3
Buffer Size = 10
Elapsed time = 20 s

International Journal of Computer Applications (0975 – 8887)
Volume 14– No.3, January 2011

37

Fig 8: Simulation results for relationship between items produced/ consumed and buffer size running in three different

environments

5.1.2 Relationship between Simulator Output and

Number of CPUs
To study this relationship, we performed three sets of
experiments with the following constant input parameters:

three producers, three consumers, buffer size 10 and elapsed
time of 20 seconds. Each set of experiment has been run with
different number of CPUs. Output of the simulator is
measured in terms of number of items produced and items
consumed. Figure 7 shows a sample result for this experiment.
The results show that the output of the system increases as the
number of CPUs increases.

5.1.3 Relationship between Simulator Output and

Buffer Size
The performance of the simulator with regards to buffer size
was computed via this experiment. In this case, the other
entire parameters are kept constant and only buffer size is
varied. Three sets of experiment have been conducted for
three types of environment; single (set number of CPU to 1)
and multiprocessor (set number of CPU to 2 and 3). The
results for this experiment are depicted in Figure 8 with three

different buffer sizes : 10, 15 and 20 . The results demonstrate
that for all environments, simulator output (number of items
produced and consumed) increases as the buffer size
increases. They are not linearly proportional although the
buffer size was increased linearly. Significant increased can
be seen when buffer size was increased from 15 to 20.

6. CONCLUSION
This simulator provides a facility for the user to experiment
with three different contexts such as simple producer-
consumer problem, producer-consumer problem in a single
processor system and producer-consumer problem in multi-
processing system. This has been deemed appropriate since
most of the current applications are distributed in nature and

run in multi-processing environment. In addition, users can
carry out comparative evaluation among different contexts in
a repeatable and controllable environment as to gain insight
on the best model to use in certain situations. All developed
modules of the simulator guarantee synchronization of
processes and satisfy necessary requirements to provide
solution to the critical section problem.

This simulator has been designed to run self-driven
simulations which are intrinsically limited in accuracy. It is
because the input data on which the simulation runs is
generated artificially to model the target system. As such, we
plan to incorporate the trace-driven simulation in the existing
simulator for more accurate results. Trace-driven uses as input,

a trace of actual events collected and recorded on a real system.
Capability of running a trace-driven simulation can be
incorporated in the existing system by developing a software
module that can translate the trace of events recorded on a real
system, into the format of input data file. The input data file so
generated then can be used to run the simulation.

7. REFERENCES
[1] Stefano, A. D., Bello, L. L., Santoro, C.1997.

Synchronous Producer-consumer transactions for real-
time distributed process control. In Proceedings of the
IEEE International Workshop on Factory
Communication Systems.

[2] Juiz, C., Puigjaner, R. 1995. Improved performance
model of a real-time software element: the producer-
consumer. In Proceedings of the Second International
Workshop on Real-Time Computing Systems and
Applications.

[3] Zhang, Y., Zhang, J., Zhang, D. 2009. Implementing and
testing Producer-consumer problem using aspect-

oriented programming. In Proceedings of the Fifth
International Conference on Information Assurance and
Security.

[4] Shen, C. 2000. Discrete-event simulation on the Internet
and the web. Future Generation Computer Systems, vol.
17, 187-196.

[5] Hilzer, Jr., R. C. 1992. Synchronization of the
Producer/Consumer problem using semaphores,
monitors, and the Ada Rendezvous. Operating Systems
Review, vol. 26, 31-39.

[6] Robbins, S. 2000. Experimentation with bounded buffer
synchronization. In Proceedings of the 31st SIGCSE
Technical Symposium on Computer Science Education.

0

20

40

60

80

100

120

140

160

10 15 20N
o

 o
f

It
e

m
s

P
ro

d
u

ce
d

/C
o

n
su

m
e

d

Buffer Size

CPU = 3

CPU = 2

CPU = 1

