
International Journal of Computer Applications (0975 – 8887)

Volume 14– No.4, January 2011

38

A Novel Architecture of a Parallel Web Crawler

Shruti Sharma
AP Dept of CE

YMCA UST, India

A.K.Sharma
Prof & Head (CE)
YMCA UST, India

J.P.Gupta
Vice-Chancellor

JPIIT, India

ABSTRACT

Due to the explosion in the size of the WWW[1,4,5] it becomes

essential to make the crawling process parallel. In this paper we

present an architecture for a parallel crawler that consists of

multiple crawling processes called as C-procs which can run on

network of workstations. The proposed crawler is scalable, is

resilient against system crashes and other event. The aim of this

architecture is to efficiently and effectively crawl the current set

of publically indexable web pages so that we can maximize the

download rate while minimizing the overhead from

parallelization

Keywords

WWW, Search Engines, Crawlers, Parallel Crawlers.

1. INTRODUCTION
The World-Wide Web has undergone explosive, exponential

growth. As a consequence, users find themselves unable to

browse the ever-changing, distributed hyperlink structure of the

web. Furthermore, they are subjected to information overload –

information is too abundant. With the increasing number of

information resources on the Web, it is often more difficult to

locate the resources that are relevant to a given need. Henceforth,

Search Engines[2,3] are becoming equally important tool in

locating relevant information.

FIGURE 1: Functional block diagram of a Search Engine

Such search engines rely on massive collections of web pages

that have been crawled by web crawlers, which traverse the web

by following hyperlinks thereafter storing downloaded pages in a

large repository that is later indexed for efficient execution of

user queries.

The functional block diagram of Search Engine is shown in

Figure 1. Crawling can be viewed as a graph search problem.

The Web is seen as a large graph with pages as its nodes and

hyperlinks as its edges. A crawler starts at a few of the nodes

(seeds) and then follows the edges to reach other nodes. The

process of fetching a page and extracting the links within it is

analogous to expanding a node in graph search. A web crawler

contacts millions of web sites in a short period of time and

consumes extremely large network, storage and memory

resources. Since these loads push the limit of existing hardware,

the task should be carefully partitioned among processes and they

should be carefully coordinated.

A web crawler [9, 10, 11, 14] is an automatic web object

retrieval system that exploits the web‟s dense link structure. It

has two primary goals:

1. To seek out new web objects, and

2. To observe changes in previously-discovered web

objects (web-event detection).

As the size of the Web grows, it becomes more difficult – or

impossible – to crawl the entire Web by a single process. Many

search engines run multiple processes in parallel. This type of

crawler is referred as a parallel crawler as shown in figure 2. In

this paper we present an architecture for a parallel crawler that

consists of multiple crawling processes, which are referred to as

C-procs[3,5,7,8]. Each C-proc performs the basic tasks that a

single-process crawler conducts. It downloads pages from the

Web, stores the pages locally, extracts URLs from them and

follows their links. A parallel crawler has many important

advantages as compared to a single-process crawler:

 Scalability: Due to enormous size of the Web, it is not

possible for a single process crawler to achieve the required

download rate therefore it is essential to run a parallel crawler.

Network-load dispersion: Multiple crawling processes of a

parallel crawler may run at geographically distant locations, each

downloading “geographically-adjacent” pages. This dispersion

becomes necessary when a single network cannot handle the

heavy load from a large-scale crawl.

 Network-load reduction: In addition to the dispersing load,

a parallel crawler may actually reduce the network load. To

download the page crawler, first has to go through the network

and the collect pages. If we can somehow divide the areas to be

crawled by each crawler, then we can reduce the overall network

load because pages go through only local networks.

Search Engine‟s

Repository

Search Engine‟s

Query Generator

Web

Crawler

WWW

Q
u

er
ie

s

R
esu

lt

Downloaded Pages

Crawling System Search Engine

Indexer

USER

Ranker

International Journal of Computer Applications (0975 – 8887)

Volume 14– No.4, January 2011

39

FIGURE 2 : General architecture of Parallel Crawler

We believe a parallel crawler[9,12,15] has many advantages and

poses interesting challenges. To build an effective web crawler,

we clearly need to address many more challenges than just

parallelization. Henceforth, in this paper, a novel framework for

Parallel Crawler has been proposed that efficiently crawls pages

from the Web. The proposed technique uses Crawling Processes

called as C-procs to download the pages from the web and store

them to the search engine‟s Repository. Moreover, these

Crawling processes are independent from each other.

2. PROPOSED SYSTEM ARCHITECTURE
In this paper we illustrate the general architecture for a

parallel crawler which include multiple crawling processes;

referred to as C-procs. Each C-proc performs the basic tasks that

a single-process crawler conducts. It downloads pages from the

Web, stores the pages locally, extracts URLs from them and

follows their links. The C-proc‟s performing these tasks may be

distributed either on the same local network or at geographically

distant locations.

Intra-site parallel crawler: When all C-proc‟s run on the

same local network and communicate through a high speed

interconnect (such as LAN), we call it an intra-site parallel

crawler. This scenario corresponds to the case where all C-proc‟s

run only on the local network on the top. That is, all C-proc‟s use

the same local network when they download pages from remote

Web sites. Therefore, the network load from C-proc‟s is

centralized at a single location where they operate.

Distributed crawler: When C-proc‟s run at geographically

distant locations connected by the Internet (or a wide area

network), we call it a distributed crawler. For example, one C-

proc may run in the US, crawling all US pages, and another C-

proc may run in France, crawling all European pages.

 We partition the system into two major components -

crawling system and mapping application. The crawling system

itself consists of several specialized components, in particular a

crawl manager, one or more crawling processes referred as C-

procs. All of these components, plus the mapping application,

can run on different machines (and operating systems) and can be

replicated to increase the system performance. The crawl

manager is responsible for receiving the URL input stream from

the URL Mapper and forwarding it to the available C-procs.

The task of this Mapping Application is to provide the IP address

corresponding to each URL in the URL-IPQueue. Figure 3,

shows the main data flows through the system. The details of

each component of the architecture are given below:

FIGURE 3: Proposed architecture of a Parallel Crawler

 along with the data flows

2.1 URL Dispatcher
This module reads the URLs from the repository (for

refreshing) and also from various C-procs (ie the external links).

As the name depicts, the task of this module is to dispatch the

URLs which are required to be downloaded to the Crawl

Manager. It actually adds these URLs to a shared Queue called

as URL-IPQueue. It also signals Map to the URLMapper for

necessary action. Its algorithm is listed below:

Begin

 Do Forever

 Begin

 While (URL-IP Queue not Full)

 Begin

 Read URL-IP pair from Repository;

 Read the URLs from C-procs;

 Store it into URL-IP Queue;

 End;

 Signal (Something to Map);

 End;

End;

2.2 DNS Resolver:
Generally the documents are known by the domain names

of their servers[18, 19]. The name of the server must be

translated into an IP address before the crawler can communicate

with the server [16]. The internet offers a service that translates

domain names to corresponding IP addresses and the software

that does this job is called the Domain Name System (DNS). The

Map

Hungry

Crawl

URL
Dispatcher

Search
Engine’s

Repository

DNS
Resolver

WWW

Crawler
Manager

CP
1

CP
2

CP
3

CP
n

URL
Mapper

URL-IP Queue

Update
Repository

International Journal of Computer Applications (0975 – 8887)

Volume 14– No.4, January 2011

40

DNS resolver uses this service to resolve the DNS address for a

URL.

2.3 URLMapper
The task of this component is to extract a URL-IP set from

the URL-IPQueue. It examines each URL-IP pair and if IP is

blank then the URL is sent to the DNS Resolver. After the URL

has been resolved for its IP, it is stored back into the URL-

IPQueue. It sends a signal crawl to the Crawl Manager. Its

algorithm is given below:

URL-Mapper ()

Begin

 Do forever

 Begin

 While (URL-IPQueue is not empty)

 Begin

 Take a URL-IP pair from the set;

 If the IP is blank then

 Begin

 Call DNS resolver to resolve URL for IP;

 Wait for the resolved URL;

 End;

 Store the Resolved URL back into URL-

 IPQueue;

 Signal (crawl) to Crawl Manager;

 End;

 signal (Hungry);

 End;

 End.

2.4 C-procConfig.txt
It is a worker configuration file which is used by the Crawl

Manager to load the initializing data. The contents of a sample

file are tabulated in Table 1.

TABLE 1: Sample Contents of C-procConfig.txt

Name Value Description

DbUrl Jdbc:odbc:thin:@

myhost:1521:orcl

Database URL

DbName CrawlDb The database Name

DBPassw

ord

CrawlDb The Database Password

MaxInsta

nces

5 The maximum number of

instances to be created for C-

Proc Component.

LocalInst

ance

Yes The instances are to be

created on same or different

machines.

ListIP Localhost If different machines are used

for different C-procs then the

list of th0se IP addresses.

Argument

URL

5 The maximum number of

URLs to be given as an

argument to a C-proc.

2.5 Crawl Manager
This component waits for the signal crawl. It reads the C-

procConfig.txt and as per the specifications stored in the file, it

creates multiple crawling processes named as C-procs. Sets of

resolved URLs from URL-IPQueue are taken and each C-proc is

given a set. Its algorithm is given below:

CrawlManager ()

Begin

 Read C-procConfig.txt file;

 Create multiple instances of C-procs: CP1 to CPm;

 Do forever

 Begin

 Wait (crawl);

 While (URL-IPQueue is not Empty)

 Begin

 Wait (hungry);

 Pickup resolved URLs from URL-IPQueue;

 Assemble and assign a set of URLs to an idle C-

 proc;

 Remove assigned URLs from the URL-

 IPQueue;

 End;

 End;

End.

2.6 C-Proc
The task of this module is to download the documents. It

maintains two queues: MainQ and LocalQ. The set of URLs

received from crawl Manager is stored in MainQ (see Fig. 3). It

down loads the documents as per the algorithm given below:

Main Queue

FIGURE 4 : The C-proc

Crawl Manager

Local Queue

Update

Update Repository

Store
URL
Set

Get
Robots.tx

t

Download
Document

Segregate
Links

Document
URL Buffer

Hungry Set of URLs from Crawl Manager

International Journal of Computer Applications (0975 – 8887)

Volume 14– No.4, January 2011

41

C-Proc()

Begin

 Store the URL set in MainQueue;

 While (MainQueue is not empty)

 Begin

 Pickup a URL;

 Identify its protocol;

 Check for robots exclusion;

 Download document;

 Store the document and its URL in Document and

 URL Buffer;

 Segregate the internal and external Links;

 Add the internal Links to LocalQueue;

 Store the External Links in the URL-IPQueue;

 While (LocalQueue is not empty)

 Begin

 Pickup a URLfrom LocalQ;

 Download document;

 Store the document and its URL in

 Document and URL Buffer;

 End;

 Signal (Update);

End;

Signal (hungry);

 End.

2.7 Document and URL Buffer
It is basically a buffer between the c-procs and the Update

Repository component. It consists of a Document-URL queue to

store the documents along with there URLs that are added to the

Search Engine‟s Repository whenever a c-proc signals update to

the update repository module.

2.8 Update Repository
This process waits for the signal update repository and on

receiving the same, updates the repository [16, 21] with the

contents of the Document and URL Buffer. The algorithm of

Update Repository Process is given below:

Update Repository()

Begin

 Set MaxSize to the maximum size of a batch;

 Do forever

 Begin

 Wait (update);

 No-of-records = 0;

 While (DocURLQueue is not empty & No-of-

 records < MaxSize)

 Begin

 Pickup an element from DocURLQ;

 Compress the document;

 Add to the batch of records to be updated;

 No-of-records= No-of-records+1;

 End;

 Update batch to database;

End;

 End.

It may be noted here that each c-proc independently downloads

documents for the URL set received from Crawl Manager. Since

all workers use different seed URLs, we hope that there will be

minimum overlap of downloaded pages. Thus, the architecture

requires no coordination overheads among the workers rendering

it to be highly scalable system.

3. Experimentation & Results

Table 2 : Results for URL: http://www.modusporta.com

 Start Time

(HH:MM:SS)

End Time

(HH:MM:SS)

Total Time

(Sec)

Parallel

Crawler
08:18:17 08:18:39 21

Crawling

process
08:18:18 08:18:39 20

Total

Internal

Links

7

Invalid

Link

2

Valid

Links

5

Average Time to

download and

analyze page

3.00 Seconds

Table 3 : Results for URL : http://www.e-paranoids.com

 Start Time

(HH:MM:SS)

End Time

(HH:MM:SS)

Total Time

(Sec)

Parallel

Crawler
08:45:12 09:51:37 387

Crawling

process
08:45:13 09:51:37 387

Total

Internal

Links

74

Invalid

Link

4

Valid Links 73

Average Time to

download and

analyze page

5,23 Seconds

http://www.modusporta.com/

International Journal of Computer Applications (0975 – 8887)

Volume 14– No.4, January 2011

42

Table 4: Comparison of Basic Crawler with Parallel Crawler

No of

Links

Basic

Crawler

Parallel

Crawler

BC vs PC

7 25 21 16.00%

74 482 387 16.60%

The above listed tables table 2 and table 3 show the result

of crawling the URLS http://www.modusporta.com and

http://www.e-paranoids.com respectively. Start Time and end

time depicts the start time and end time of a parallel crawling

application. This crawler is implemented in java using RMI and

Threads for parallel and distributed processing. Table 4 depicts

the comparative analysis of a basic web crawler with a parallel

web crawler that has 5 C-procs running in parallel. The new

proposed Parallel Web Crawler took 16.30% less time then Basic

Crawler.

4. CONCLUSIONS & FUTURESCOPE

Crawlers are being used more and more often to collect Web data

for search engine, caches, and data mining. As the size of the

Web grows, it becomes increasingly important to use parallel

crawlers. This paper has enumerated the major components of

the crawler and their algorithmic details. Parallelization of

crawling system is very vital from the point of view of

downloading documents in a reasonable amount of time. Also it

is designed to be scalable parallel crawler. There are obviously

many improvements to the system that can be made. A major

open issue for future work is a detailed study of Database

indexing and normalization that can be done so as to increase the

work efficiency of the overall system. Inter-processes

communication can also be added. Some mechanism for

removing duplicate downloads shall also be included in cases

where different URLs point to same page.

5. REFERENCES

[1] Mike Burner, “Crawling towards Eternity: Building an

archive of the World Wide Web”, Web Techniques

Magazine, 2(5), May 1997.

[2] Berners-Lee and Daniel Connolly, “Hypertext Markup

Language.Internetworking draft”, Published on the WWW

at

http://www.w3.org/hypertext/WWW/MarkUp/HTML.html.

[3] Jumgoo Cho and Hector Garcia-Molina, “The evolution of

the Web and implications for an incremental crawler”, Prc.

Of VLDB Conf., 2000.

[4] Allen Heydon and Mark Najork, “Mercator: A Scalable,

Extensible Web Crawler”,

[5] Junghoo Cho, “Parallel Crawlers” proceedings of

www2002, Honolulu, hawaii, USA, May 7-11, 2002. ACM

1-58113-449-5/02/005.

[6] A.K.Sharma, J. P. Gupta, D. P. Agarwal, “Augment

Hypertext Documents suitable for parallel crawlers”, Proc.

of WITSA-2003, a National workshop on Information

Technology Services and Applications, Feb‟2003, New

Delhi.

[7] http:/research.compaq.com/SRC/mercator/papers/www/pape

r.html Jonathan Vincent, Graham King, Mark Udall,

“General Principles of Parallelism in Search/Optimisation

Heuristcs”,

[8] Vladislav Shkapenyuk and Torsten Suel, “Design and

Implementation of a High performance Distributed Web

Crawler”, Technical Report, Department of Computer and

Information Science, Polytechnic University, Brooklyn, July

2001.

[9] Brian Pinkerton, “Finding what people want: Experiences

with the web crawler.”Proc. Of WWW conf., 1994.

[10] Jumgoo Cho and Hector Garcia-Molina, “The evolution of

the Web and implications for an incremental crawler”, Prc.

Of VLDB Conf.,2000.

[11] Sergey Brin and Lawrence Page, “The anatomy of large

scale hyper textual web search engine”, Proc. Of 7th

International World Wide Web Conference, volume 30,

Computer Networks and ISDN Systems, pp 107-117, April

1998.

[12] Junghoo Cho and Hector Garcia-Molina, “Incremental

crawler and evolution of web”, Technical Report,

Department of Computer Science, Stanford University.

[13] Alexandros Ntoulas, Junghoo Cho, Christopher Olston

"What's New on the Web? The Evolution of the Web from a

Search Engine Perspective." In Proceedings of the World-

Wide Web Conference (WWW), May 2004.

[14] Michael K. Bergman, “The deep web: Surfacing hidden

value”, Journal of Electronic Publishing, 7(1), 2001.

[15] V. Crescenzi, G. Mecca, and P. Merialdo. “Roadrunner:

Towards Automatic Data Extraction from Large Web Sites,”

VLDB Journal, 2001, pp. 109-118.

[16] P. G. Ipeirotis and L. Gravano, “Distributed search over the

hidden-web: Hierarchical sampling and selection,” In

Proceedings of VLDB „02, 2002, pp. 394-405.

[17] Robots exclusion protocol.

http://info.webcrawler.com/mak/projects/robots/exclusion.ht

ml.

[18] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki,

E. H. Siegel, and D. C. Steere. Coda: a highly available file

system for a distributed workstation environment. IEEE

Transactions on Computers, 39(4):447–459, April 1990.

[19] D. Hirschberg. Parallel algorithms for the transitive closure

and the connected component problem. In Proceedings of

the 8th Annual ACM Symposium on the Theory of

Computing, 1976.

http://www.modusporta.com/
http://www.e-paranoids.com/

