
International Journal of Computer Applications (0975 – 8887)

Volume 14– No.5, January 2011

6

Implementation of PPM Image Processing and Median
Filtering

Sushant Pawar
SITRC

Nashik, India

Prasad S.Halgaonkar
MITCOE

Pune, India

J.W.Bakal
SESYTIET

Mumbai, India

V.M.Wadhai
MAE

Alandi, India

ABSTRACT

Image consists of a rectangular array of discrete picture

elements called pixels. The PPM (portable pixmap format

(.ppm)) is a particularly simple way used to represent or

encode a rectangular image as uncompressed data file.

This .ppm file can be viewed with number of tools,

including GIMP, gThumb image viewer etc. Reading and

Writing PPM images are a difficult task which has been

overcome successfully in our experiment.

In signal processing, it is often desirable to be able to

perform some kind of noise reduction on an image or

signal. The median filter is a nonlinear digital

filtering technique, often used to remove noise. Such noise

reduction is a typical pre-processing step to improve the

results of later processing (for example, edge detection on

an image). Median filtering is very widely used in

digital image processing because under certain conditions,

it preserves edges whilst removing noise. The results

shows the smoothened image.

Keywords – Digital Image Processing, Median Filter.

I. INTRODUCTION
The PPM format is a lowest common denominator color

image file format. It should be noted that this format is

egregiously inefficient. It is highly redundant, while

containing a lot of information that the human eye can't

even discern. Furthermore, the format allows very little

information about the image besides basic color, which

means you may have to couple a file in this format with

other independent information to get any decent use out of

it. However, it is very easy to write and analyze programs

to process this format, and that is the point.

It should also be noted that files often conform

to this format in every respect except the precise semantics

of the sample values. These files are useful because of the

way PPM is used as an intermediary format. They are

informally called PPM files, but to be absolutely precise,

you should indicate the variation from true PPM. For

example, "PPM using the red, green, and blue colors that

the scanner in question uses."

The name "PPM" is an acronym derived from

"Portable Pixel Map." Images in this format (or a

precursor of it) were once also called "portable pixmaps."

File extension for ppm images are .ppm, .pgm, .pbn, .pnm.

PPM is for “pixmap” which represents full RGB colors.

Each file start with a two-byte file descriptor (in ASCII)

that explains its type (pbm, pgm and ppm) and its

encoding (ASCII or binary). The descriptor is a capital P

followed by a single digit number.

File

Descriptor

Type Encoding

P1

Portable bitmap ASCII

P2

Portable graymap ASCII

P3

Portable pixmap ASCII

P4

Portable bitmap Binary

P5

Portable graymap Binary

P6

Portable pixmap Binary

The ASCII based formats allow for human

readability and easy transport so long as those platforms

understand ASCII, while the binary formats are more

efficient both at saving space in the file and easy to

understand. When using the binary formats, PBM uses 1

bit per pixel, PGM uses 8 bit per pixel, PPM uses 24 bit

per pixel, 8 for red, 8 for green, and 8 for blue.

The binary format of the image stores each color

component of each pixel with one byte (thus three bytes

per pixel) in the order of red, green, and blue. The file will

be smaller in size but the color information will not be

readable by humans.

The .ppm file is used to represent two types of

images, one for grayscale images, corresponding to

black/white photographs and the other for color images.

For the grayscale image each pixel consists of 1 byte

which is represented as unsigned char; a value „0‟ is solid

black and a value of „255‟ is bright white. Intermediate are

“gray” values of increasing brightness. The second one is

color images correspond to color photographs, each pixel

consists of 3 bytes with each byte representing as unsigned

char, and this format is called RGB. Three byte represents

the red component, green component and blue component

when red = = green = = blue a grayscale “color” is

produced.

These colors are additive,

(255, 255, 0) = red + green = bright yellow

(255, 0, 255) = red + blue = magenta (purple)

(0, 255, 255) = green + blue = cyan

(255, 255, 255) = red + green + blue = white

http://en.wikipedia.org/wiki/Signal_processing
http://en.wikipedia.org/wiki/Noise_reduction
http://en.wikipedia.org/wiki/Digital_filter
http://en.wikipedia.org/wiki/Digital_filter
http://en.wikipedia.org/wiki/Digital_filter
http://en.wikipedia.org/wiki/Signal_noise
http://en.wikipedia.org/wiki/Edge_detection
http://en.wikipedia.org/wiki/Image_processing

International Journal of Computer Applications (0975 – 8887)

Volume 14– No.5, January 2011

7

Using filtering it is possible to filter out the

noise present in image. A high pass filter passes the

frequent changes in the gray level and a low pass filter

reduces the frequent changes in the gray level of an image.

That is; the low pass filter smoothes and often removes the

sharp edges.

A special type of low pass filter is the Median

filter. The Median filter takes an area of image (3 x 3,

5 x 5, 7 x 7 etc), observes all pixel values in that area and

puts it into the array called element array. Then, the

element array is sorted and the median value of the

element array is found out. We have achieved this by

sorting the element array in the ascending order using

bubble sort and returning the middle elements of the sorted

array as the median value. The output image array is the

set of all the median values of the element arrays obtained

for all the pixels. Median filter goes into a series of loops

which cover the entire image array.

Following are some of the important features of the

Median filter [1], [2], [3]:

 It is a non-linear digital filtering technique.

 It works on a monochrome color image.

 It reduces „speckle‟ and „salt and paper‟ noise.

 It is easy to change the size of the Median filter.

 It removes noise in image, but adds small changes

in noise-free parts of image.

 It does not require convolution.

 Its edge preserving nature makes it useful in many

cases.

The median value selected will be exactly equal to one of

the existing brightness value so that no round-off error is

involved when we work independently with integer

brightness values comparing to the other filters.

II. PPM IMAGE FILE AND MEDIAN

FILTER

a) PPM Image File

1. PPM file structure

The ppm file structure for the ppm header and Packed

image data is as follows:

The ppm header

P6

320 240

255

The P6 indicates this is a color image (P5 means

grayscale). The width (number of columns) of the image is

320 pixels and height (number of rows) of the image is

240 pixels. The 255 is the maximum value of pixel.

Following the 255 is a \n (0x0a) which is a new line

character. The image data, the value of red component of

the upper left pixel must immediately follow the new line

following the green and then the blue component. There

must be a total of 3 x 320 x 240 = 230400 bytes of data.

2. Read/Write PPM Image

The routines for reading and writing an image file

are as follow,

1. int rows=0, columns=0;

2. unsigned char *buf1, *buf2;

3. char *in_name = “input_file.ppm”;

4. char *out_name = “output_file.ppm”;

5. buf1 = (unsigned char *) malloc ((3000000) *size of

(unsigned char));

6. creat_image_file (in_name, out_name);

7. get_image_size (in_name, &columns, &rows);

8. the_image = allocate_imageArray (rows, columns);

9. read_image_array (in_name, imageArray);

10. /*call an image processing routines.*/

11. write_image_array (out_name, imageArray);

12. free_image_array (imageArray, rows);\

The first four lines declare the basic variable needed.

Line „6‟creates the output image to be just like the input

image (same type and size). The output image is needed

because the routine cannot write to an image file that does

not exist. Line „7‟ reads the size of the input image after

opening the input image file header information. The

height (rows) and width (columns) are necessary to

allocate the image array. These allocations take place in

line „8‟, where it has been shown on buf1 declared as in

line „5‟. Actually the size (height and width) does not

matter to the programmer, because we just read the size

and allocate this size to the variable. Line „9‟ reads the

image array from the input file. In this step after first

checking the type of file (ppm, bmp, tif), this information

is given from the header of the input image file. After

getting information from header it extracts all the data of

the input image and puts it into the image array. It also

includes all the RGB component values present in the file.

 When we get all the required information and data of

an input image, the appropriate image processing routines

are called to process the image data, and subsequently, the

processed data is written into the output image file [4].

Finally, the memory array allocated as in line „8‟ is freed.

These routines ride on top of the other routines that work

with specific image file formats. They create file,

determine if the file exists or not, manipulate headers, pull

important information or put it into the file etc.

International Journal of Computer Applications (0975 – 8887)

Volume 14– No.5, January 2011

8

3. Read/Write Video file

The steps for video read/write are as follow,

1. Capture video of any type of format (.avi,

.jpg, .mpeg etc.).

2. Strip video into a number of frames in .ppm

format.

3. Read frames one by one with the use of

read ppm routine.

4. Call the appropriate image processing

routine.

5. Write frames one by one with the use of

write ppm routine into the output file.

6. Merge all these output frames into the

compressed form to make a movie.

7. Make an output movie/video in the required

format to play using Mencoder.

We captured the video file and striped it into a

number of frames and stored them into the input folder

from where we extracted the frames one by one for

read/write purpose. This is done by using Mplayer and

Mencoder (video codec) on Linux platform. Mplayer

strips the video file into a number of frames in the required

format using command line for Mplayer.

 mplayer -vo pnm input_file

The above command strips the input video file into

the number of frames. To read the frames one by one from

the input folder in „C‟ language we created a junk file that

contains only the names of all the frames (e.g.

000000001.ppm, 00000002.ppm etc.). The junk file is

opened in the read mode for reading the names of the

frames one by one, and by the use of string concatenation,

proper address is given to the input folder containing the

input image frames that have been input to the read ppm

routine. We address the output folder where the output

frames will be stored in the same manner as explained for

the case of input folder.

We used read ppm routine to read the frames one by

one. Once the reading is completed, an appropriate image

processing routine is called for processing the image data,

which have been extracted while reading of the image, for

example, RGB components etc. In the next step, the image

file is written into the output folder one by one after

processing. This is done by using write ppm routine.

Now, we have an output folder that contains all

output image frame in a sequential manner. From these we

create an output video file [5]. But prior to this we will

require to convert the uncompressed type of output frames

into the compressed format type (ppm to png). This is

done with the help of shell scripting using the command

as follows:

 convert input_file.ppm output_file.png

Now the output folder contains the sequence of

frames in compressed png format (e.g. 00000001.png,

00000002.png etc.). From these we make a movie/video

by the use of Mencoder command

 mencoder mf://*.png fps = 25 –o video.avi

–ovc lavc

Using movie player Mplayer, the video file video.avi

is played. The above command is only for video codec and

for audio we need to specify appropriately. The Mencoder

has various applications in the context of video processing.

It includes the conversion of one video format into the

other, frame rate specification, frame size specification

etc. The implemented read/write routine can handle any

number of movie frames for reading and writing.

b) Median Filter

The steps for the implemented median filtering are

as follow.

1. Take an input image array.

2. Append two rows and columns of „zeros‟ at the

end of input image array.

3. Initiate a 3 x 3 matrix, starting from the pixel,

whose value is going to change after filtering.

Initialize from the first pixel of input image

array.

4. Extract all 3 x 3 matrix elements and put into the

1-D element array.

5. Sort the element array in ascending order.

6. Extract the middle value of sorted element array

and put into the output image Array.

7. Repeat steps three to six for a complete image.

Working of Median filter is also shown in the following

figure 1.

Figure 1: Low-Pass filtering with 3 x 3 Median filter

International Journal of Computer Applications (0975 – 8887)

Volume 14– No.5, January 2011

9

The speed of computation of an 3 x 3 Median filter

and the 3 x 3 convolution filter is almost equal. However,

when we moved to use 5 x 5 and higher orders, the

Median filter slows down because of the continuous

sorting and picking of the median value throughout image.

III. EXPERIMENTAL RESULTS
The Read/ Write PPM Image routines were implemented

in C language in Linux OS with the help of GCC

compiler. Whereas median filter was also implemented in

C language[6], [7] on Linux platform [8]. Following figure

2 and figure 3 shows the input to the Median filter and

resulting output. It is evident that the filtered output image

gives the smoothness of the image.

Figure 2: Input image to the Median Filter

Figure 3: Result of 3 x 3 Median Filter

IV. CONCLUSION

 Read/ Write of PPM Image file and Read/ Write of

Video file have successfully been carried out along with

median filter. These are the preliminary but necessary

steps to satisfy our goal to provide a better and efficient

estimation of the object motion to be used in the smart

camera for various applications, which captures and

processes the image to extract application-specific

information. Our future work focuses on developing the

algorithm for object tracking.

V. REFERENCES

[1] Sebastian Montabone, “Beginning Digital Image

Processing: Using Free Tools for Photographers”,

Apress 2010.

[2] Wilhelm Burger, “Principles of Digital Image

Processing: Core Algorithms”, Springer 2009.

[3] R. Gonzalez, R. Woods, “Digital Image Processing”,

Pearson Prentice Hall Ltd., 2007.

[4] Fredric Patin, “An Introduction of Digital Image

Processing,” June 2003.

[5] Allen Bovik, “The Essential Guide to Video

Processing,” Academic Press- 2
nd

Edition 2009.

[6] Byron Gottfrried, “Programming with C,” Schaum‟s

Outline, 2
nd

Edition 1999.

[7] Yeshwant Kanetkar, “Let Us C,” Allied Publisher,

3
rd

Edition 1998.

[8] J. Purcell, “Inc Linux Complete Command

Reference,” Red Hat Software, 1997.

http://bookshared.com/2010/08/beginning-digital-image-processing-using-free-tools-for-photographers.html
http://bookshared.com/2010/08/beginning-digital-image-processing-using-free-tools-for-photographers.html
http://bookshared.com/2010/08/beginning-digital-image-processing-using-free-tools-for-photographers.html
http://bookshared.com/2010/07/principles-of-digital-image-processing-core-algorithms.html
http://bookshared.com/2010/07/principles-of-digital-image-processing-core-algorithms.html
http://bookshared.com/2010/07/principles-of-digital-image-processing-core-algorithms.html

