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ABSTRACT 

A simple approach for knowledge based maze solving is 

presented for a mobile robot.  The artificial intelligence concept 

like reinforcement learning technique is utilized by the robot to 

learn the new environment. The robot travels through the 

environment and identifies the target by following a set of rules. 

After reaching the target, the robot returns back through the 

optimum path by avoiding dead ends. For achieving this, the 

robot uses a line maze solving algorithm which uses a set of 

replacement rules to replace the wrong paths travelled with the 

correct ones. The algorithm for this maze solver is qualitative in 

nature, requiring no map of environment, no image Jacobian, no 

Homography, no fundamental matrix, and no assumption. The 

environment is accessible, deterministic and static. The working 

procedure of this project consists of line path following, mobile 

robot navigation, knowledge based navigation, reinforcement 

learning. 

General Terms 
Maze solving algorithm 

1. Teach Phase 

2. Replay Phase 

Rules for maze solver 

1. LSR Rule 

2. Replacement Rule 

1. INTRODUCTION 
Robotics deals with computer-controlled machine that is 

programmed to move, manipulates objects and accomplish work 

while interacting with its environment. Robots are able to 

perform repetitive tasks more quickly, cheaply, and accurately 

than humans. The term robot originates from the Czech word 

robota, meaning “compulsory labor.” It was first used in the 1921 

play R.U.R. (Rossum's Universal Robots) by the Czech novelist 

and playwright Karel Capek. The word robot has been used since 

to refer to a machine that performs work to assist people or work 

that humans find difficult or undesirable. 

The first industrial modern robots were the Unimates developed 

by George Devol and Joe Engelberger in the late 50's and early 

60's. The first patents were by Devol for parts transfer machines. 

Engelberger formed Unimation and was the first to market 

robots. As a result, Engelberger has been called the 'father of 

robotics.' Modern industrial arms have increased in capability 

and performance through controller and language development, 

improved mechanisms, sensing, and drive systems. 

The modern era of robotics begins around 1959, when John 

McCarthy and Marvin Minsky established the Artificial 

Intelligence lab at MIT. A couple years later, Heinrich Erst 

created the first modern robotic hand, and in 1962, Unimate, the 

first industrial robot, was created to perform repetitive or 

dangerous tasks on the assembly line of General Motors. 

 

2. PROBLEM STATEMENT 
In Military department, during terrorism attack, there is a need to 

identify the bombs placed by harmful attackers. A person is 

employed to carry out these action, which is highly a risky 

profession placing the challenge for livelihood.  In order to 

overcome this risky job and to save the life of the Army, a maze 

solving robot has been designed and developed.  This maze 

solver is useful in the environments where there is a threat to 

human life. The robot travels through the environment and 

identifies the target and returns back through the optimum path 

by avoiding dead ends.  

The camera for this maze solving robot is reflection sensors.  

This sensors use LED as transmitters and photodiode as 

reflectors. The reflective nature of black and white colour is 

utilized in the robot.  Black surface absorbs the light where as 

white is reflective in nature, thus emitting the light it received.   

Identifying the target location and learning the path through 

reinforcement method are the actions performed by the robot.  

The goal of the robot is to detect the bomb spot and dismantle it.  

The environment is accessible, deterministic and static. 

3. SCENARIO 
The environment is in the form of a maze with black lines 

representing the path and having different kinds of junctions. 
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There is a starting point and target differentiated from other 

paths. 

The robot will have IR sensors in the front to track the path. The 

sensor values are sent to the microcontroller which processes 

them and identifies the possible turns needed. 

The controller then rotates the wheels by supplying appropriate 

values to the motors which drive the wheels. In case of decision 

making junctions, the microcontroller stores the junction in its 

memory for finding the optimum path later. Maze solving 

algorithm is used for this purpose.  

The Figure 1 gives the blueprint of the sample maze. 

TARGET

  

Figure 1 Blueprint of the maze 

4. LITERATURE REVIEW 

4.1 Overview 
Mobile robots in human inhabited environments should operate 

safely and reliably. At the same time they are expected to 

minimize energy consumption, travel time and distance. 

Optimization of these parameters implies that the robot must be 

able to predict its behavior in a partially unknown and changing 

environment. 

4.2 Line Detector 
The line detector is an Infrared reflective sensor that can be 

attached to the front of the car. The sensor delivers three digital 

signals to the microcontroller to enable the car to follow a white 

line on a black background, or vice versa. 

 

[3] examined path planning strategies in large partially unknown 

environments. The robot learned innovative routes to find 

reliable trajectories and optimize robot‟s behavior. The approach 

was verified to shortest path following in 6 different 

environments. 

The analysis and optimal design of a millimeters scale omni-

directional mobile microrobot has been presented in [5]. The 

microrobot is supported by two sets of special dualwheel 

structure, and is actuated by three electromagnetic micromotors 

with 2 mm diameter.  

 

Based upon a novel concept called the funnel lane [13], the 

coodinates of feature points during the replay phase are 

compared with those obtained during the teaching phase in order 

to determine the turning direction. Increased robustness is 

achieved by coupling the feature coordinates with odometry 

information. The system requires a single off-the-shelf, forward-

looking camera with no calibration (either external or internal, 

including lens distortion). Implicit calibration of the system is 

needed only in the form of a single controller gain. 

4.3 Motion Planning Algorithms 
The first step in mobile robot navigation is to create or to use a 

map and to localize itself in it. An autonomous agent has to have 

the following abilities: map learning or map creating, localization 

and path planning [12]. Swarm intelligence theory is proposed 

for motion planning of multi-robot systems. Multiple particles 

start from different points in the solutions space and interact to 

each other while moving towards the goal position. Swarm 

intelligence theory is a derivative-free approach to the problem of 

multi-robot cooperation which works by searching iteratively in 

regions defined by each robot‟s best previous move and the best 

previous move of its neighbors [2]. 

 

Robots use path planning algorithms to plan a path from start to 

goal. In dynamic environments the environment can change 

during path following. To avoid collisions with unknown 

obstacles robots use local re-planning. While classic Artificial 

Intelligence(AI) planners are used to produce the global path to 

the goal, local re-planners usually act reactively [3]. 

 

The roadmap approach to robot path planning [7] is one of the 

earliest methods. Since then, many different algorithms for 

building roadmaps have been proposed and widely implemented 

in mobile robots but their use has always been limited to 

planning in static, totally known environments. 

 

4.4 Reinforcement Learning 
Reinforcement learning [11] from delayed rewards has been 

applied to mobile robot control in various domains. The approach 

has been especially successful in applications where it is possible 

to learn policies in simulation and then transfer the learned 

controller to the real robot. However, applications involving 

learning on real robots are still relatively rare. In principle a 

mobile robot could learn any task from scratch by reinforcement 

learning, but learning of complex tasks can be very time 

consuming, so the researcher must find a way to speed up the 

learning.  

Techniques for accelerating reinforcement learning on 

real robots include  

(1) guiding exploration by human demonstration, advice or an 

approximate pre- installed controller 

(2) using replayed experiences or models to generate “simulated” 

experiences 

(3) applying function approximators for better generalization.  

Function approximators also provide a means for 

dealing with continuous state and action spaces. 

4.4.1 Q- Learning  

Q-learning is a form of model-free reinforcement 

learning method based on stochastic dynamic programming. It 

provides robots with the capability of learning to act optimally in 

a Markovian environment.  

In [6], they have proposed an approach which combined 

Fuzzy based CMAC(Cerebellar Model Arithmetic Computer) to 

calculate the weighting factors of the agents‟ state with Multi-

agent Q-learning to generate a continuous action output 

command and have performed it in real robot applications.  

4.4.2 Lazy Q Learning  



International Journal of Computer Applications (0975 – 8887) 

Volume 14– No.7, February 2011 

24 

Compared to single robot learning, cooperative learning adds the 

challenge of a much larger search space (combined individual 

search spaces), awareness of other team members, and also the 

synthesis of the individual behaviors with respect to the task 

given to the group. Over the years, reinforcement learning has 

emerged as the main learning approach in autonomous robotics, 

and lazy learning has become the leading bias, allowing the 

reduction of the time required by an experiment to the time 

needed to test the learned behavior performance. These two 

approaches have been combined together in what is now called 

lazy Q-learning [1], a very efficient single robot learning 

paradigm.  

 

4.5 Different Environments  
Mobile robots in human inhabited environments should operate 

safely and reliably. At the same time they are expected to 

minimize energy consumption, travel time and distance. 

Optimization of these parameters implies that the robot must be 

able to predict its behavior in a partially unknown and changing 

environment [3].  

 

Mining accidents have occurred since the early days of mining. 

There were a total of 525 mining disasters (incidents with five or 

more fatalities) in both coal and metal/non metal mines from 

1900 through 2007 in the United States, resulting in 12,823 

fatalities. Most of these disasters involve mine rescue teams, 

which are specially trained to perform search and rescue 

operations in extremely hostile environments.  

 

Robots have a great potential to assist in these underground 

operations, searching ahead of rescue teams and reporting 

conditions that may be hazardous to the teams. When explosive 

conditions exist or when heavy smoke or unstable ground 

conditions prevent team members from entering a mine, robots 

can become an invaluable tool [9].  

 

Underground mine rescue presents a novel application of 

robotics. It is different from urban search and rescue in that it has 

a stronger focus on property recovery and requires manipulation, 

but it shares the same problems in the use of tethers and belays 

for operating on slopes and down voids. Mine rescue robot needs 

are most similar to law enforcement and bomb squad robots; 

however, mine rescue appears to require less manipulation 

overall. The most common type of subterranean robots, pipe 

crawlers, are too specialized for the diverse mine missions.  

 

4.6 Obstacle Detection  
Most collision avoidance methods do not consider the vehicle 

shape and its kinematic and dynamic constraints, assuming the 

robot to be point-like and omnidirectional with no acceleration 

constraints. The contribution of [4] is a methodology to consider 

the exact shape and kinematics, as well as the effects of 

dynamics in the collision avoidance layer, since the original 

avoidance method does not address them. This is achievable by 

abstracting the constraints from the avoidance methods in such a 

way that when the method is applied, the constraints already 

have been considered.  

 
Figure 2 Collision Avoidance Method 

The Figure 2 shows the collision avoidance method proposed in 

[4]. Abstraction layer abstracts shape, kinematics, and dynamics 

of the vehicle from the avoidance method. The idea is to 

understand the method as a “black-box” and to modify the 

representation of its inputs, so that they have implicit information 

about these restrictions.  

4.7 Fuzzy Logic Controllers  
Fuzzy Logic Controllers (FLC) are used to implement an efficient 

and accurate positioning of an autonomous car-like mobile robot, 

respecting final orientation. To accomplish this task, called 

“Oriented Positioning”, two FLC have been developed: Robot 

Positioning Controller (RPC) and Robot Following Controller 

(RFC).  

[10] presents a new technique used to perform the task of 

Oriented Positioning on a non-holonomic mobile robot, using two 

fuzzy logic controllers. The first controller used for Simple 

Positioning has been implemented and tested on simulation. 

Then, it is combined with a second controller, used for “Virtual 

Following”, in order to accomplish the desired task  

4.7.1 Combined Intelligent Control  

The Combined Intelligent Control(CIC) [8] combines 

different methods and architectures in intelligence, distributed 

intelligence and control areas to reach a high level of intelligence 

by emphasizing their strengths and eliminating the weaknesses of 

each architecture. Natural environments are dynamic, 

nondeterministic and complex and if agents want to be efficient, 

they must have a high level of intelligence same as any natural 

creature. A robot must have the special abilities to do different 

goals and tasks and the CIC tries to provide these abilities. The 

CIC is a distributed structure. Thus, it can provide some abilities 

such as unlimited development, high fault tolerance, cooperation, 

ability to do various tasks, needless of accurate modelling of 

environment and other agents, making global decisions by local 

information.  

5. DESIGN METHODOLOGY 
Design methodology consists of designing six basic circuits. 

Signals are passed on from one circuit to another and necessary 

conversions are carried out by each circuit and thus enabling 

proper line flow. In sensor circuit, four IR emitter receiver pairs 

were used which distinguishes black line from white surface 

based on their reflective nature. The information from sensor 

circuit is passed on to comparator, which is mainly used for 

converting the analog input to digital output.  
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The digitalized output is then passed on to transistor circuit, 

which is needed for maintaining constant voltage through out the 

circuit. The signal is then passed on to programmed 

microcontroller circuit which then takes decision based on 

received input. It processes the given input and sends the 

corresponding output to motor driver circuit. Motor driver circuit 

is responsible for driving two independent motors, which is 

connected to each of its corresponding side. Each motor is 

operated independently by the motor driver, which is decided 

based on each motors input. Motor driver rotates the motor both 

in forward and reverse directions. By supplying same voltage to 

both of its terminals which is associated with motor driver, the 

motor can be stopped at dead ends.  

 

The basic flow diagram is shown below in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Basic Flow Diagram 

5.1 Sensor Circuit Design 

 
Figure 4 Single Sensor Circuit 

A single sensor circuit is shown in Figure 4. It basically 

comprises of IR emitting diode, IR receiving transistor, resistors, 

potentiometer and an op-amp.  

 

5.2 Analog to Digital Convertor 
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Figure 5 Operation of ADC 

 

The operation of ADC is shown in Figure 5. Each op-amp 

consists of an inverting and a non-inverting input. Non-inverting 

input gets the signal from potentiometer, which is varied 

accordingly. To the inverting input, sensors output are given. 

When there is high signal at the non-inverting side output 

perceived is logic 1, similarly when there is low signal at the 

non-inverting side; logic 0 is received as output. Thus it digitizes 

the analog signal from sensors. 

 

5.3    Transistor Based Circuit Design 

 
Figure  6  Transistor circuit 
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Figure 6 shows the circuit design based on transistors. Sensors 

are nothing but the combination of transmitters and receivers. 

Transmitters are usually LED‟s which emits constant 5V to the 

environment whereas Receivers are usually Transistors which 

absorbs the reflected voltage from the environment usually in the 

range 1-5V.  Sometimes there might be the case where the 

transistors transmit the voltage of range 0-2V which is not 

accepted as input by the Atmel microcontroller.  In order to raise 

the input up to 4V say, transistor circuit is used. 

 

5.4    Microcontroller Based Circuit Design 
 

 
Figure 7 Microcontroller circuit 

 

The Figure 7 shows the circuit design based on microcontroller 

AT89C51.LED and Transistor T are combined and termed as 

Sensors. The sensor circuit consists of 4 sensors say S1, S2, S3, 

S4. Inputs are taken from sensors and if required, the current 

flow can be modified using transistor circuit.  Then the input is 

given to Port1 of Atmel microcontroller. The output is taken from 

Port2 (X2-1, X2-2, X2-3, X2-4), which is embedded to DC motor 

through H-Bridge circuit.  Microcontroller is programmed with a 

C program [14] in order to sense the environment and act 

according to the given sensor input, thus rotating the wheels 

accordingly.  Here Atmel [16] acts as the artificial intelligent 

agent. 

 

5.5 Design of Motor Driver 
 

 
 

 

Figure 8 H-Bridge circuit pin connections 

The Pin connections of L293D is shown in the Figure 8. H-bridge 

is used to drive the DC motor [15] at various voltages.  The DC 

motor is driven with 6V.  Outputs of Atmel microcontroller 

through Port2 is taken through the pins X1-1, X1-2, X1-3, X1-4 

and given as input to H-bridge through pin2, pin7, pin10, pin15. 

 

  The pins X1-1, X1-2 are used to drive left motor Lm. The pins 

X1-3, X1-4 are used to drive right motor Rm.  The output pins 

are X2-1, X2-2, X2-3, X2-4.  The pins X2-1, X2-2 are connected 

to positive and negative terminals of Left DC motor respectively.  

The pins X2-3, X2-4 are connected to negative and positive 

terminals of Right DC motor respectively. 

 

5.6 Integrated Circuit Design 
 

 

Figure 9 Integrated circuit 

 

The entire circuit design is shown below in Figure 9. The 

integrated circuit consists of designing various individual circuits 

starting from sensor circuit to H-Bridge designing. Designing of 

these circuits are briefly discussed above. Analog signal from 

sensor circuit is passed on to comparator for digital conversion. 

Digital data is passed to microcontroller through transistor circuit 

for retaining its voltage. Master controller processes the data 

following the way it is programmed to. It runs the DC motors 

according to the input using H-Bridge circuit. 

 

 

6. DRIVING METHODOLOGY 
 

The various junctions identified according to the sensor input are 

tabulated in the Table 1. 
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Table 1 Truth table for Junction Identification 

S1- sensor1 , S2- sensor2 , S3-sensor3 , S4-sensor4 

6.1 Motor Rotations 

Motor rotations based on various turns are illustrated below in 

the Table 2. 

 

 

 

 

POSSIBLE  

TURNS 

LEFT 

MOTOR 

RIGHT

MOTOR 

VALUES               

4-junction(OR)T-

junction 

  Stop    Forward      0x01 

Only Left(OR)Left 

and   Straight 

  Stop Forward      0x01 

Only Right   Forward Stop      0x04 

Right and Straight   Forward Forward      0x05 

Slightly Left   Reverse Forward      0x09 

Slightly Right   Forward Reverse      0x06 

Target   Stop Stop      0x00 

Dead End   Forward Stop      0x04 

Table 2 Truth Table for Motor Rotation 

 

DENOMINATIONS (from left to right): 

01  FORWARD 

10   REVERSE 

00   STOP 

7. MAZE SOLVING ALGORITHM 

7.1 LSR Rule 
LSR rule states Left direction has highest priority compared to 

straight and right directions.  Similarly Straight has high 

precedence compared to Right.  The precedence order is  

Left > Straight > Right 

7.2 Replacement Rule 
The replacement algorithm is used to find the optimum path in a 

maze. This algorithm takes the turns stored during the teach 

phase and applies the replacement rules accordingly and corrects 

all the wrong turns. It identifies the wrong turns in the maze by 

finding the u turns made previously. Then it replaces the wrong 

turns made by the correct ones 

7.2.1 Pseudo Code of Replacement Rule 

It takes the turns stored during teach phase as values in „res‟ 

array and „i‟ as the iterator.  

The replacement rules used are 

LUL S 

LUS R 

SUL R 

where L - Left turn, R - Right turn, S - Straight, U – U turn 

 

void replay(String result) 

{ 

 //declare i as int and assign it with 0 

 while(result[i+1] is not null) 

{ 

 if(result[i]==‟U‟) 

 { 

    if(result[i-1]==‟L‟ && result[i+1]==‟L‟) 

  replace “LUL” as „S‟; 

   else if(result[i-1]==‟L‟ && 

result[i+1]==‟S‟) 

  replace “LUS” as „R‟; 

   else if(result[i-1]==‟S‟ && 

result[i+1]==‟L‟) 

  replace “SUL” as „R‟; 

 } 

} 

} 

7.3 Teach Phase 
The teach phase consists of the robot following the black path 

and finding out the target. During this phase, the robot prefers 

left in case of junctions with left turn and prefers straight 

compared to right turns. At each junction where decision is to be 

made, the turn the robot takes is stored in the memory of the 

controller. The robot stores „L‟ when it takes left and „S‟ when it 

takes straight when a junction is encountered. In case of dead 

ends, it makes an u turn and stores „U‟. It does not store only 

Left and only Right turns. 

When target is reached, the robot finishes the teach phase and 

proceeds to the replay phase. 
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7.3.1 Pseudo Code of Teach Phase 
 

String Teach(Graph maze) 

{ 

 Switch(path in maze) 

 { 

  case “Target”: 

   //target reached. 

   Break; 

  case “Dead end”: 

   Take U turn; 

   Store 'U' in result array; 

   break; 

  case “Left only”: 

   Take left turn; 

   break; 

  case “right only”: 

   Take right turn; 

   break; 

  case “Left or Straight junction”: 

   Take left  turn; 

   Store 'L' in result array; 

   break; 

  case “Left or Right junction”: 

   Take left turn; 

   Store 'L' in result array; 

   break; 

  case “Straight or Right junction”: 

   Go Straight; 

   Store 'S' in result array; 

   break; 

  case “Four way junction”: 

   Take left turn; 

   Store 'L' in result array; 

   break; 

  } 

 replace(result); 

 return result; 

} 

7.4 Replay Phase 
During the replay phase, the robot will travel from the target to 

the starting point by travelling through the optimum path. The 

optimum path can be found by applying the replacement 

algorithm on the values stored during the teach phase.   

The robot travels in the black path similar to the teach phase till 

it encounters a junction. Whenever a junction is encountered, it 

takes value from the stored memory and makes a turn.   

7.4.1 Pseudo Code of Replay Phase 

 

void replay(String result, Graph maze) 

{ 

 while(result[i]!=null && path is a junction) 

 { 

  if(result[i]=='L') 

   Take left; 

  else if(result[i]=='S') 

   Go Straight; 

  else if(result[i]=='R') 

   Take right; 

 } 

} 

 

8. WORKING 
The working of the robot in solving the line maze is given as 

follows.  

 

8.1 Line Path Following 
This Robot follows a black maze by sensing the environment 

using IR sensors. It is programmed to follow the line perfectly 

with both the motors rotating in forward direction. Any 

deviations from the line will adjust the motor accordingly to 

ensure it follows the right path again. Two sensors are used for 

tracing the black line, and the left most, right most sensor are 

used for taking decision on junctions. The basic principle applied 

for following the line is the amount of reflection variation caused 

by white and black surfaces. It differentiates depending on the 

amount of reflection and follows the correct path.   

8.2 Mobile Robot Navigation 
Robot navigates with its sensors decision, the output from sensor 

circuit is given to microcontroller, which is programmed based 

on the input values. Given input is processed and corresponding 

output is given to H-bridge, to navigate the robot by rotating it in 

corresponding directions. 

8.3 Knowledge Based Navigation 
Knowledge based navigation is incorporated by means of LSR 

Rule. First Priority is given for left, second to straight and least 

priority to straight. Based on this knowledge, the robot navigates. 

In teaching phase, it uses this rule to navigate, it traverses 

through all paths including dead ends. When it encounters a dead 

end, it takes U-turn and traverses the same path again. It stores 

the values only in junctions, which is later used in replay phase. 

U-turn paths will be deleted and restored as different values in 

teaching phase which is later used by the robot for navigation in 

replay phase. In replay phase, LSR rule is not applied instead the 

replaced values are used to traverse the right path in an optimal 

way. 

8.4 Reinforcement Learning 
Artificial Intelligence concept of reinforcement learning is 

applied in replay phase. Reinforcement learning illustrates the 

concept of “learning from mistakes”. In teaching phase, it learns 

the maze, it proceeds through dead ends. In replay phase, it 

solves the maze without dead ends in an optimal path, thus 

applying the concept of reinforcement learning. In replay phase 

LSR rule is not applied, instead the values stored in teaching 

phase are been replaced. The Only for decision making turns the 

values are stored for future use, for the only left/right turns no 

values are stored since it is of no use. Thus the robot follows an 

optimal path and reaches the target using reinforcement learning 

technique.  

Replacement Rules used here are, 

  LULS  

  LUSR 

  SULR 

L-Left    U-U turn   R-Right    S-Straight 
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If there is a U-turn, it implies those values should be replaced 

according to the replacement rules.  

9. RESULTS 
The snapshots of this project when the robot traverses through 

the line maze is shown here. 

 

 
Figure 10 Robot in Initial Position 

In the Figure 10, the robot starts from initial position in teach 

phase. 

 

 
Figure 11 Robot Entering T – Junction 

In the Figure 11, the robot makes an u - turn and enters into the 

T-Junction where it chooses the path to take. This occurs during 

the Teach phase. 

 

 
Figure 12 Robot crossing the Four Junction 

In the Figure 12, the robot makes a left turn when it enters the 

Four Junction. This also occurs during the Teach phase. 

 

 
Figure 13  Robot Reaches The Target 

The robot reaches the target and ends the Teach Phase. This is 

shown in the Figure 13. 

 

 
Figure 14 Robot Backtracking From Target 

The robot enters the Replay phase in the Figure 14  and 

backtracks the path to reach the starting point in an optimum 

path. 

 

 
Figure 15 Robot Traversing the Optimum Path 
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In the Figure 15, the robot travels through the optimum path 

avoiding the dead ends to reach the starting point. This is done in 

the Replay Phase. 

 
Figure 16 Robot Finishes Replay Phase 

In the Figure 16, the robot reaches the starting point and finishes 

the Replay Phase by traversing the optimum path found through 

the replacement algorithm. 

10. CONCLUSIONS AND FUTURE 

DIRECTIONS 
This robot is mainly used for applications where human‟s 

intervention turns out to be danger. It finds the best and optimal 

path for solving a maze thereby reducing path cost in replay 

phase. As LDR sensors, IR sensors are not sensitive to ambient 

light thereby providing high efficiency. 

Since the design is based on 6V power supply, problems such as 

voltage drop at many places due to rapid discharging of battery 

power are observed. Also memory capacity of the microcontroller 

wasn‟t too efficient to store multiple maze information‟s at any 

particular instant. 

Due to limited memory capacity of  Atmel AT89C51, the robot 

couldn‟t solve multiple mazes at one particular time. Chips of 

high capacity can be used to overcome this problem. Some times 

there might be a problem for this bot to track the path and decide 

due to voltage drop. Providing SMPS can turn out to be a better 

solution. Loops if available in maze is not resolved in this 

algorithm design.  It can be overcomed by redesigning the 

algorithm to consider the path is a repeated one or not. Multiple 

targets in a single maze couldn‟t be solved with the current 

algorithm. Redesign of the algorithm with some user inputs like 

total number of targets available in the given maze and recalling 

the procedure for each target and storing the same may be the 

solution for this. 
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