
International Journal of Computer Applications (0975 – 8887)

Volume 14– No.7, February 2011

22

Knowledge based Reinforcement Learning Robot in Maze

Environment

Dr. D. Venkata Vara Prasad ME.Ph.D,
Professor,

Department Of Cse,
Ssn College Of Engineering.,

Kalavakkam-603 110.

Chitra Devi. J,
Be (Cse),

Ssnadar College Of Engg.,
Kalavakkam- 603 110.

Karpagam. P,

Be(Cse),
Ssnadar College Of Engg.,

Kalavakkam- 603 110.

Manju Priyadharsini. D
Be(Cse),

Ssnadar College Of Engg.,
Kalavakkam- 603 110.

ABSTRACT

A simple approach for knowledge based maze solving is

presented for a mobile robot. The artificial intelligence concept

like reinforcement learning technique is utilized by the robot to

learn the new environment. The robot travels through the

environment and identifies the target by following a set of rules.

After reaching the target, the robot returns back through the

optimum path by avoiding dead ends. For achieving this, the

robot uses a line maze solving algorithm which uses a set of

replacement rules to replace the wrong paths travelled with the

correct ones. The algorithm for this maze solver is qualitative in

nature, requiring no map of environment, no image Jacobian, no

Homography, no fundamental matrix, and no assumption. The

environment is accessible, deterministic and static. The working

procedure of this project consists of line path following, mobile

robot navigation, knowledge based navigation, reinforcement

learning.

General Terms
Maze solving algorithm

1. Teach Phase

2. Replay Phase

Rules for maze solver

1. LSR Rule

2. Replacement Rule

1. INTRODUCTION
Robotics deals with computer-controlled machine that is

programmed to move, manipulates objects and accomplish work

while interacting with its environment. Robots are able to

perform repetitive tasks more quickly, cheaply, and accurately

than humans. The term robot originates from the Czech word

robota, meaning “compulsory labor.” It was first used in the 1921

play R.U.R. (Rossum's Universal Robots) by the Czech novelist

and playwright Karel Capek. The word robot has been used since

to refer to a machine that performs work to assist people or work

that humans find difficult or undesirable.

The first industrial modern robots were the Unimates developed

by George Devol and Joe Engelberger in the late 50's and early

60's. The first patents were by Devol for parts transfer machines.

Engelberger formed Unimation and was the first to market

robots. As a result, Engelberger has been called the 'father of

robotics.' Modern industrial arms have increased in capability

and performance through controller and language development,

improved mechanisms, sensing, and drive systems.

The modern era of robotics begins around 1959, when John

McCarthy and Marvin Minsky established the Artificial

Intelligence lab at MIT. A couple years later, Heinrich Erst

created the first modern robotic hand, and in 1962, Unimate, the

first industrial robot, was created to perform repetitive or

dangerous tasks on the assembly line of General Motors.

2. PROBLEM STATEMENT
In Military department, during terrorism attack, there is a need to

identify the bombs placed by harmful attackers. A person is

employed to carry out these action, which is highly a risky

profession placing the challenge for livelihood. In order to

overcome this risky job and to save the life of the Army, a maze

solving robot has been designed and developed. This maze

solver is useful in the environments where there is a threat to

human life. The robot travels through the environment and

identifies the target and returns back through the optimum path

by avoiding dead ends.

The camera for this maze solving robot is reflection sensors.

This sensors use LED as transmitters and photodiode as

reflectors. The reflective nature of black and white colour is

utilized in the robot. Black surface absorbs the light where as

white is reflective in nature, thus emitting the light it received.

Identifying the target location and learning the path through

reinforcement method are the actions performed by the robot.

The goal of the robot is to detect the bomb spot and dismantle it.

The environment is accessible, deterministic and static.

3. SCENARIO
The environment is in the form of a maze with black lines

representing the path and having different kinds of junctions.

International Journal of Computer Applications (0975 – 8887)

Volume 14– No.7, February 2011

23

There is a starting point and target differentiated from other

paths.

The robot will have IR sensors in the front to track the path. The

sensor values are sent to the microcontroller which processes

them and identifies the possible turns needed.

The controller then rotates the wheels by supplying appropriate

values to the motors which drive the wheels. In case of decision

making junctions, the microcontroller stores the junction in its

memory for finding the optimum path later. Maze solving

algorithm is used for this purpose.

The Figure 1 gives the blueprint of the sample maze.

TARGET

Figure 1 Blueprint of the maze

4. LITERATURE REVIEW

4.1 Overview
Mobile robots in human inhabited environments should operate

safely and reliably. At the same time they are expected to

minimize energy consumption, travel time and distance.

Optimization of these parameters implies that the robot must be

able to predict its behavior in a partially unknown and changing

environment.

4.2 Line Detector
The line detector is an Infrared reflective sensor that can be

attached to the front of the car. The sensor delivers three digital

signals to the microcontroller to enable the car to follow a white

line on a black background, or vice versa.

[3] examined path planning strategies in large partially unknown

environments. The robot learned innovative routes to find

reliable trajectories and optimize robot‟s behavior. The approach

was verified to shortest path following in 6 different

environments.

The analysis and optimal design of a millimeters scale omni-

directional mobile microrobot has been presented in [5]. The

microrobot is supported by two sets of special dualwheel

structure, and is actuated by three electromagnetic micromotors

with 2 mm diameter.

Based upon a novel concept called the funnel lane [13], the

coodinates of feature points during the replay phase are

compared with those obtained during the teaching phase in order

to determine the turning direction. Increased robustness is

achieved by coupling the feature coordinates with odometry

information. The system requires a single off-the-shelf, forward-

looking camera with no calibration (either external or internal,

including lens distortion). Implicit calibration of the system is

needed only in the form of a single controller gain.

4.3 Motion Planning Algorithms
The first step in mobile robot navigation is to create or to use a

map and to localize itself in it. An autonomous agent has to have

the following abilities: map learning or map creating, localization

and path planning [12]. Swarm intelligence theory is proposed

for motion planning of multi-robot systems. Multiple particles

start from different points in the solutions space and interact to

each other while moving towards the goal position. Swarm

intelligence theory is a derivative-free approach to the problem of

multi-robot cooperation which works by searching iteratively in

regions defined by each robot‟s best previous move and the best

previous move of its neighbors [2].

Robots use path planning algorithms to plan a path from start to

goal. In dynamic environments the environment can change

during path following. To avoid collisions with unknown

obstacles robots use local re-planning. While classic Artificial

Intelligence(AI) planners are used to produce the global path to

the goal, local re-planners usually act reactively [3].

The roadmap approach to robot path planning [7] is one of the

earliest methods. Since then, many different algorithms for

building roadmaps have been proposed and widely implemented

in mobile robots but their use has always been limited to

planning in static, totally known environments.

4.4 Reinforcement Learning
Reinforcement learning [11] from delayed rewards has been

applied to mobile robot control in various domains. The approach

has been especially successful in applications where it is possible

to learn policies in simulation and then transfer the learned

controller to the real robot. However, applications involving

learning on real robots are still relatively rare. In principle a

mobile robot could learn any task from scratch by reinforcement

learning, but learning of complex tasks can be very time

consuming, so the researcher must find a way to speed up the

learning.

Techniques for accelerating reinforcement learning on

real robots include

(1) guiding exploration by human demonstration, advice or an

approximate pre- installed controller

(2) using replayed experiences or models to generate “simulated”

experiences

(3) applying function approximators for better generalization.

Function approximators also provide a means for

dealing with continuous state and action spaces.

4.4.1 Q- Learning

Q-learning is a form of model-free reinforcement

learning method based on stochastic dynamic programming. It

provides robots with the capability of learning to act optimally in

a Markovian environment.

In [6], they have proposed an approach which combined

Fuzzy based CMAC(Cerebellar Model Arithmetic Computer) to

calculate the weighting factors of the agents‟ state with Multi-

agent Q-learning to generate a continuous action output

command and have performed it in real robot applications.

4.4.2 Lazy Q Learning

International Journal of Computer Applications (0975 – 8887)

Volume 14– No.7, February 2011

24

Compared to single robot learning, cooperative learning adds the

challenge of a much larger search space (combined individual

search spaces), awareness of other team members, and also the

synthesis of the individual behaviors with respect to the task

given to the group. Over the years, reinforcement learning has

emerged as the main learning approach in autonomous robotics,

and lazy learning has become the leading bias, allowing the

reduction of the time required by an experiment to the time

needed to test the learned behavior performance. These two

approaches have been combined together in what is now called

lazy Q-learning [1], a very efficient single robot learning

paradigm.

4.5 Different Environments
Mobile robots in human inhabited environments should operate

safely and reliably. At the same time they are expected to

minimize energy consumption, travel time and distance.

Optimization of these parameters implies that the robot must be

able to predict its behavior in a partially unknown and changing

environment [3].

Mining accidents have occurred since the early days of mining.

There were a total of 525 mining disasters (incidents with five or

more fatalities) in both coal and metal/non metal mines from

1900 through 2007 in the United States, resulting in 12,823

fatalities. Most of these disasters involve mine rescue teams,

which are specially trained to perform search and rescue

operations in extremely hostile environments.

Robots have a great potential to assist in these underground

operations, searching ahead of rescue teams and reporting

conditions that may be hazardous to the teams. When explosive

conditions exist or when heavy smoke or unstable ground

conditions prevent team members from entering a mine, robots

can become an invaluable tool [9].

Underground mine rescue presents a novel application of

robotics. It is different from urban search and rescue in that it has

a stronger focus on property recovery and requires manipulation,

but it shares the same problems in the use of tethers and belays

for operating on slopes and down voids. Mine rescue robot needs

are most similar to law enforcement and bomb squad robots;

however, mine rescue appears to require less manipulation

overall. The most common type of subterranean robots, pipe

crawlers, are too specialized for the diverse mine missions.

4.6 Obstacle Detection
Most collision avoidance methods do not consider the vehicle

shape and its kinematic and dynamic constraints, assuming the

robot to be point-like and omnidirectional with no acceleration

constraints. The contribution of [4] is a methodology to consider

the exact shape and kinematics, as well as the effects of

dynamics in the collision avoidance layer, since the original

avoidance method does not address them. This is achievable by

abstracting the constraints from the avoidance methods in such a

way that when the method is applied, the constraints already

have been considered.

Figure 2 Collision Avoidance Method

The Figure 2 shows the collision avoidance method proposed in

[4]. Abstraction layer abstracts shape, kinematics, and dynamics

of the vehicle from the avoidance method. The idea is to

understand the method as a “black-box” and to modify the

representation of its inputs, so that they have implicit information

about these restrictions.

4.7 Fuzzy Logic Controllers
Fuzzy Logic Controllers (FLC) are used to implement an efficient

and accurate positioning of an autonomous car-like mobile robot,

respecting final orientation. To accomplish this task, called

“Oriented Positioning”, two FLC have been developed: Robot

Positioning Controller (RPC) and Robot Following Controller

(RFC).

[10] presents a new technique used to perform the task of

Oriented Positioning on a non-holonomic mobile robot, using two

fuzzy logic controllers. The first controller used for Simple

Positioning has been implemented and tested on simulation.

Then, it is combined with a second controller, used for “Virtual

Following”, in order to accomplish the desired task

4.7.1 Combined Intelligent Control

The Combined Intelligent Control(CIC) [8] combines

different methods and architectures in intelligence, distributed

intelligence and control areas to reach a high level of intelligence

by emphasizing their strengths and eliminating the weaknesses of

each architecture. Natural environments are dynamic,

nondeterministic and complex and if agents want to be efficient,

they must have a high level of intelligence same as any natural

creature. A robot must have the special abilities to do different

goals and tasks and the CIC tries to provide these abilities. The

CIC is a distributed structure. Thus, it can provide some abilities

such as unlimited development, high fault tolerance, cooperation,

ability to do various tasks, needless of accurate modelling of

environment and other agents, making global decisions by local

information.

5. DESIGN METHODOLOGY
Design methodology consists of designing six basic circuits.

Signals are passed on from one circuit to another and necessary

conversions are carried out by each circuit and thus enabling

proper line flow. In sensor circuit, four IR emitter receiver pairs

were used which distinguishes black line from white surface

based on their reflective nature. The information from sensor

circuit is passed on to comparator, which is mainly used for

converting the analog input to digital output.

International Journal of Computer Applications (0975 – 8887)

Volume 14– No.7, February 2011

25

The digitalized output is then passed on to transistor circuit,

which is needed for maintaining constant voltage through out the

circuit. The signal is then passed on to programmed

microcontroller circuit which then takes decision based on

received input. It processes the given input and sends the

corresponding output to motor driver circuit. Motor driver circuit

is responsible for driving two independent motors, which is

connected to each of its corresponding side. Each motor is

operated independently by the motor driver, which is decided

based on each motors input. Motor driver rotates the motor both

in forward and reverse directions. By supplying same voltage to

both of its terminals which is associated with motor driver, the

motor can be stopped at dead ends.

The basic flow diagram is shown below in Figure 3.

Figure 3 Basic Flow Diagram

5.1 Sensor Circuit Design

Figure 4 Single Sensor Circuit

A single sensor circuit is shown in Figure 4. It basically

comprises of IR emitting diode, IR receiving transistor, resistors,

potentiometer and an op-amp.

5.2 Analog to Digital Convertor

V+

V-

V+ > V-

0 V

HIGH

-

+

V+

V-

V+ < V-

0 V

LOW

-

+

Figure 5 Operation of ADC

The operation of ADC is shown in Figure 5. Each op-amp

consists of an inverting and a non-inverting input. Non-inverting

input gets the signal from potentiometer, which is varied

accordingly. To the inverting input, sensors output are given.

When there is high signal at the non-inverting side output

perceived is logic 1, similarly when there is low signal at the

non-inverting side; logic 0 is received as output. Thus it digitizes

the analog signal from sensors.

5.3 Transistor Based Circuit Design

Figure 6 Transistor circuit

SENSOR CIRCUIT

COMPARATOR

TRANSISTOR

 CIRCUIT

MICROCONTROLLER

 H-BRIDGE

 MOTORS

Converts

Analog Signal

to Digital

 Data

To overcome

Voltage Drop

Processes Digital

Data and Takes

Decisions

Controls Two

Motors

Independently

Senses the surface and

sends corresponding

Signals

Rotate in both

Directions

International Journal of Computer Applications (0975 – 8887)

Volume 14– No.7, February 2011

26

Figure 6 shows the circuit design based on transistors. Sensors

are nothing but the combination of transmitters and receivers.

Transmitters are usually LED‟s which emits constant 5V to the

environment whereas Receivers are usually Transistors which

absorbs the reflected voltage from the environment usually in the

range 1-5V. Sometimes there might be the case where the

transistors transmit the voltage of range 0-2V which is not

accepted as input by the Atmel microcontroller. In order to raise

the input up to 4V say, transistor circuit is used.

5.4 Microcontroller Based Circuit Design

Figure 7 Microcontroller circuit

The Figure 7 shows the circuit design based on microcontroller

AT89C51.LED and Transistor T are combined and termed as

Sensors. The sensor circuit consists of 4 sensors say S1, S2, S3,

S4. Inputs are taken from sensors and if required, the current

flow can be modified using transistor circuit. Then the input is

given to Port1 of Atmel microcontroller. The output is taken from

Port2 (X2-1, X2-2, X2-3, X2-4), which is embedded to DC motor

through H-Bridge circuit. Microcontroller is programmed with a

C program [14] in order to sense the environment and act

according to the given sensor input, thus rotating the wheels

accordingly. Here Atmel [16] acts as the artificial intelligent

agent.

5.5 Design of Motor Driver

Figure 8 H-Bridge circuit pin connections

The Pin connections of L293D is shown in the Figure 8. H-bridge

is used to drive the DC motor [15] at various voltages. The DC

motor is driven with 6V. Outputs of Atmel microcontroller

through Port2 is taken through the pins X1-1, X1-2, X1-3, X1-4

and given as input to H-bridge through pin2, pin7, pin10, pin15.

 The pins X1-1, X1-2 are used to drive left motor Lm. The pins

X1-3, X1-4 are used to drive right motor Rm. The output pins

are X2-1, X2-2, X2-3, X2-4. The pins X2-1, X2-2 are connected

to positive and negative terminals of Left DC motor respectively.

The pins X2-3, X2-4 are connected to negative and positive

terminals of Right DC motor respectively.

5.6 Integrated Circuit Design

Figure 9 Integrated circuit

The entire circuit design is shown below in Figure 9. The

integrated circuit consists of designing various individual circuits

starting from sensor circuit to H-Bridge designing. Designing of

these circuits are briefly discussed above. Analog signal from

sensor circuit is passed on to comparator for digital conversion.

Digital data is passed to microcontroller through transistor circuit

for retaining its voltage. Master controller processes the data

following the way it is programmed to. It runs the DC motors

according to the input using H-Bridge circuit.

6. DRIVING METHODOLOGY

The various junctions identified according to the sensor input are

tabulated in the Table 1.

International Journal of Computer Applications (0975 – 8887)

Volume 14– No.7, February 2011

27

Table 1 Truth table for Junction Identification

S1- sensor1 , S2- sensor2 , S3-sensor3 , S4-sensor4

6.1 Motor Rotations

Motor rotations based on various turns are illustrated below in

the Table 2.

POSSIBLE

TURNS

LEFT

MOTOR

RIGHT

MOTOR

VALUES

4-junction(OR)T-

junction

 Stop Forward 0x01

Only Left(OR)Left

and Straight

 Stop Forward 0x01

Only Right Forward Stop 0x04

Right and Straight Forward Forward 0x05

Slightly Left Reverse Forward 0x09

Slightly Right Forward Reverse 0x06

Target Stop Stop 0x00

Dead End Forward Stop 0x04

Table 2 Truth Table for Motor Rotation

DENOMINATIONS (from left to right):

01 FORWARD

10 REVERSE

00 STOP

7. MAZE SOLVING ALGORITHM

7.1 LSR Rule
LSR rule states Left direction has highest priority compared to

straight and right directions. Similarly Straight has high

precedence compared to Right. The precedence order is

Left > Straight > Right

7.2 Replacement Rule
The replacement algorithm is used to find the optimum path in a

maze. This algorithm takes the turns stored during the teach

phase and applies the replacement rules accordingly and corrects

all the wrong turns. It identifies the wrong turns in the maze by

finding the u turns made previously. Then it replaces the wrong

turns made by the correct ones

7.2.1 Pseudo Code of Replacement Rule

It takes the turns stored during teach phase as values in „res‟

array and „i‟ as the iterator.

The replacement rules used are

LUL S

LUS R

SUL R

where L - Left turn, R - Right turn, S - Straight, U – U turn

void replay(String result)

{

 //declare i as int and assign it with 0

 while(result[i+1] is not null)

{

 if(result[i]==‟U‟)

 {

 if(result[i-1]==‟L‟ && result[i+1]==‟L‟)

 replace “LUL” as „S‟;

 else if(result[i-1]==‟L‟ &&

result[i+1]==‟S‟)

 replace “LUS” as „R‟;

 else if(result[i-1]==‟S‟ &&

result[i+1]==‟L‟)

 replace “SUL” as „R‟;

 }

}

}

7.3 Teach Phase
The teach phase consists of the robot following the black path

and finding out the target. During this phase, the robot prefers

left in case of junctions with left turn and prefers straight

compared to right turns. At each junction where decision is to be

made, the turn the robot takes is stored in the memory of the

controller. The robot stores „L‟ when it takes left and „S‟ when it

takes straight when a junction is encountered. In case of dead

ends, it makes an u turn and stores „U‟. It does not store only

Left and only Right turns.

When target is reached, the robot finishes the teach phase and

proceeds to the replay phase.

S1

S2

S3

S4

DECISIONS

0

0

0

0

4 -junction (OR)T-junction

0

 0

0

1

Only left (OR) Left and straight

1

0

0

0

Only right (OR)Right and

straight

0

0

1

1

Take slight Left Turn

1

0

1

1

Take slight Left Turn

1

1

0

0

Take slight Right Turn

1

1

0

1

Take slight Right Turn

0

1

1

0

Target

1

1

1

1

Dead End

International Journal of Computer Applications (0975 – 8887)

Volume 14– No.7, February 2011

28

7.3.1 Pseudo Code of Teach Phase

String Teach(Graph maze)

{

 Switch(path in maze)

 {

 case “Target”:

 //target reached.

 Break;

 case “Dead end”:

 Take U turn;

 Store 'U' in result array;

 break;

 case “Left only”:

 Take left turn;

 break;

 case “right only”:

 Take right turn;

 break;

 case “Left or Straight junction”:

 Take left turn;

 Store 'L' in result array;

 break;

 case “Left or Right junction”:

 Take left turn;

 Store 'L' in result array;

 break;

 case “Straight or Right junction”:

 Go Straight;

 Store 'S' in result array;

 break;

 case “Four way junction”:

 Take left turn;

 Store 'L' in result array;

 break;

 }

 replace(result);

 return result;

}

7.4 Replay Phase
During the replay phase, the robot will travel from the target to

the starting point by travelling through the optimum path. The

optimum path can be found by applying the replacement

algorithm on the values stored during the teach phase.

The robot travels in the black path similar to the teach phase till

it encounters a junction. Whenever a junction is encountered, it

takes value from the stored memory and makes a turn.

7.4.1 Pseudo Code of Replay Phase

void replay(String result, Graph maze)

{

 while(result[i]!=null && path is a junction)

 {

 if(result[i]=='L')

 Take left;

 else if(result[i]=='S')

 Go Straight;

 else if(result[i]=='R')

 Take right;

 }

}

8. WORKING
The working of the robot in solving the line maze is given as

follows.

8.1 Line Path Following
This Robot follows a black maze by sensing the environment

using IR sensors. It is programmed to follow the line perfectly

with both the motors rotating in forward direction. Any

deviations from the line will adjust the motor accordingly to

ensure it follows the right path again. Two sensors are used for

tracing the black line, and the left most, right most sensor are

used for taking decision on junctions. The basic principle applied

for following the line is the amount of reflection variation caused

by white and black surfaces. It differentiates depending on the

amount of reflection and follows the correct path.

8.2 Mobile Robot Navigation
Robot navigates with its sensors decision, the output from sensor

circuit is given to microcontroller, which is programmed based

on the input values. Given input is processed and corresponding

output is given to H-bridge, to navigate the robot by rotating it in

corresponding directions.

8.3 Knowledge Based Navigation
Knowledge based navigation is incorporated by means of LSR

Rule. First Priority is given for left, second to straight and least

priority to straight. Based on this knowledge, the robot navigates.

In teaching phase, it uses this rule to navigate, it traverses

through all paths including dead ends. When it encounters a dead

end, it takes U-turn and traverses the same path again. It stores

the values only in junctions, which is later used in replay phase.

U-turn paths will be deleted and restored as different values in

teaching phase which is later used by the robot for navigation in

replay phase. In replay phase, LSR rule is not applied instead the

replaced values are used to traverse the right path in an optimal

way.

8.4 Reinforcement Learning
Artificial Intelligence concept of reinforcement learning is

applied in replay phase. Reinforcement learning illustrates the

concept of “learning from mistakes”. In teaching phase, it learns

the maze, it proceeds through dead ends. In replay phase, it

solves the maze without dead ends in an optimal path, thus

applying the concept of reinforcement learning. In replay phase

LSR rule is not applied, instead the values stored in teaching

phase are been replaced. The Only for decision making turns the

values are stored for future use, for the only left/right turns no

values are stored since it is of no use. Thus the robot follows an

optimal path and reaches the target using reinforcement learning

technique.

Replacement Rules used here are,

 LULS

 LUSR

 SULR

L-Left U-U turn R-Right S-Straight

International Journal of Computer Applications (0975 – 8887)

Volume 14– No.7, February 2011

29

If there is a U-turn, it implies those values should be replaced

according to the replacement rules.

9. RESULTS
The snapshots of this project when the robot traverses through

the line maze is shown here.

Figure 10 Robot in Initial Position

In the Figure 10, the robot starts from initial position in teach

phase.

Figure 11 Robot Entering T – Junction

In the Figure 11, the robot makes an u - turn and enters into the

T-Junction where it chooses the path to take. This occurs during

the Teach phase.

Figure 12 Robot crossing the Four Junction

In the Figure 12, the robot makes a left turn when it enters the

Four Junction. This also occurs during the Teach phase.

Figure 13 Robot Reaches The Target

The robot reaches the target and ends the Teach Phase. This is

shown in the Figure 13.

Figure 14 Robot Backtracking From Target

The robot enters the Replay phase in the Figure 14 and

backtracks the path to reach the starting point in an optimum

path.

Figure 15 Robot Traversing the Optimum Path

International Journal of Computer Applications (0975 – 8887)

Volume 14– No.7, February 2011

30

In the Figure 15, the robot travels through the optimum path

avoiding the dead ends to reach the starting point. This is done in

the Replay Phase.

Figure 16 Robot Finishes Replay Phase

In the Figure 16, the robot reaches the starting point and finishes

the Replay Phase by traversing the optimum path found through

the replacement algorithm.

10. CONCLUSIONS AND FUTURE

DIRECTIONS
This robot is mainly used for applications where human‟s

intervention turns out to be danger. It finds the best and optimal

path for solving a maze thereby reducing path cost in replay

phase. As LDR sensors, IR sensors are not sensitive to ambient

light thereby providing high efficiency.

Since the design is based on 6V power supply, problems such as

voltage drop at many places due to rapid discharging of battery

power are observed. Also memory capacity of the microcontroller

wasn‟t too efficient to store multiple maze information‟s at any

particular instant.

Due to limited memory capacity of Atmel AT89C51, the robot

couldn‟t solve multiple mazes at one particular time. Chips of

high capacity can be used to overcome this problem. Some times

there might be a problem for this bot to track the path and decide

due to voltage drop. Providing SMPS can turn out to be a better

solution. Loops if available in maze is not resolved in this

algorithm design. It can be overcomed by redesigning the

algorithm to consider the path is a repeated one or not. Multiple

targets in a single maze couldn‟t be solved with the current

algorithm. Redesign of the algorithm with some user inputs like

total number of targets available in the given maze and recalling

the procedure for each target and storing the same may be the

solution for this.

11. ACKNOWLEDGEMENTS
Authors are thankful to Dr. S. Shiv Nadar, Chairman of SSN

Institutions, Dr. Chitra Babu Head of Department(CSE), faculty

members of SSN Institutions and family and friends for valuable

guidance and necessary testing facilities for this work.

12. REFERENCES
[1] Claude F. Touzet. 2004 “Distributed Lazy Q-learning for

Cooperative Mobile Robots”, pp. 5-13, International Journal

of Advanced Robotic Systems, Volume 1 Number 1, ISSN

1729-8806

[2] Gerasimos G. Rigatos. 2008 “Multi-Robot Motion Planning

Using Swarm Intelligence”, International Journal of

Advanced Robotic Systems, Vol. 5, No. 2

[3] Heero, K.; Aabloo, A. & Kruusmaa, M. 2005 “Learning

Innovative Routes for Mobile Robots in Dynamic Partially

Unknown Environments”, pp. 209 - 222, International

Journal of Advanced Robotic Systems, Volume 2, Number

3, ISSN 1729-8806

[4] Javier Minguez, Associate Member, IEEE, and Luis

Montano, Member, IEEE 2009 “ Extending Collision

Avoidance Methods to Consider the Vehicle Shape,

Kinematics, and Dynamics of a Mobile Robot” IEEE

TRANSACTIONS ON ROBOTICS, VOL. 25, NO. 2.

[5] Jianghao Li; Zhenbo Li and Jiapin Chen. 2008 “Wheels

Optimization and Vision Control of Omni-directional

Mobile Microrobot”, International Journal of Advanced

Robotic Systems, Vol. 5, No. 2

[6] Kao-Shing, Hwang, Yu-Jen Chen, and Tzung-Feng Lin.

2008 “Q-learning in Multi-Agent Cooperation”, IEEE

International Conference on Advanced Robotics and its

Social Impacts, Taipei, Taiwan, Aug. 23-25

[7] Maurizio Piaggio and Renato Zaccaria 1997 “Learning

Navigation Situations Using RoadMaps”, D.I.S.T.

University of Genoa Via Opera Pia 13,I-16145 Genova, Italy

[8] Moteaal Asadi Shirzi, M. R. Hairi Yazdi and Caro Lucas.

2007 “Combined Intelligent Control (CIC) An Intelligent

decision making algorithm”, International Journal of

Advanced Robotic Systems,Vol.4,No.1

[9] Murphy, R.; Kravitz, J.; Stover, S.; Shoureshi, R. 2009

“Mobile robots in mine rescue and recovery”, Robotics &

Automation Magazine, IEEE Volume 16, Issue 2, Pages: 91-

103

[10] Noureddine Ouadah, Lamine Ourak and Farès Boudjema.

2008 “Car-Like Mobile Robot Oriented Positioning by

Fuzzy Controllers”, International Journal of Advanced

Robotic Systems, Vol. 5, No. 3

[11] Shaker, M.R. Shigang Yue Duckett, T. 2009 Dept. of

Comput. & Inf., Univ. of Lincoln, Lincoln, UK, “Vision-

based reinforcement learning using approximate policy

iteration”, Advanced Robotics, ICAR 2009.

[12] Szoke, I. Lazea, G. Tamas, L. Popa, M. Majdik, A.

2009 “Path planning and dynamic objects detection”,

Advanced Robotics, ICAR 2009.

[13] Zhichao Chen and Stanley T. Birchfield. 2009 Senior

Member, IEEE, “Qualitative Vision-Based Path Following”,

IEEE TRANSACTIONS ON ROBOTICS, VOL. 25, NO. 3.

[14] Vinod G. Shelake , Rajanish K. Kamat, Jivan S. Parab,

Gourish M. Naik, “Exploring C for Microcontrollers - A

Hands on Approach”.

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=5166725
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=5166725

