
International Journal of Computer Applications (0975 – 8887) 

Volume 15– No.7, February 2011 

1 

A Proposed Compiler to Integrate Model Driven 

Architecture with Web Services – Road Map 

Mohammed Abdalla Osman Mukhtar 
Azween Abdullah, Alan G. Downe 

Department of Information and Computer Science 
Universiti Teknologi PETRONAS 

Tronoh, MALAYSIA 

 

ABSTRACT 

Model Driven Architecture (MDA) technique is mainly 

depend on two processes; mapping specification and 

transformation definition, this last one (sometimes called 

model transformation definition) has a tool to implement, 

which the most used one is Query/View/Transformation 

(QVT) Relational Language. This language sponsored by 

Object Management Group (OMG), and we found that it 

needs a repository for the both target model and source model, 

that mean these two models must be exist before execute the 

transformation definition (QVT Code). To eliminate this 

repository problem we propose in this paper a solution for this 

problem that we can compile the QVT code into Business 

Process Execution Language for Web Services (BPEL4WS). 

This solution will provide valuable contribution especially for 

MDA infrastructure, firstly to eliminate repository 

requirements for target model, secondly to make model 

transformation as web services. 

General Terms 

Model Driven Architecture; Model Transformation; 

Integration of Web Services with other Techniques. 

Keywords 

MDA; PIM; PSM; QVT; BPEL4WS. 

1. INTRODUCTION 
If we need to make model transformation in MDA to be as 

web service, we need first to understand how the selected 

model transformation language (QVT in this case) has 

worked. As we found it is depend on Warren‟s Abstract 

Machine, which is consider as foundation base for prolog 

language. In contrast we need to choose appropriate web 

service language to be the target language while using QVT as 

source language. Depending on some criterion we selected 

Business Process Execution Language for Web Service 

(BPEL4WS) or BPEL as target language. 

2. QVT RELATIONAL LANGUAGE 
QVT is the OMG standard language for specifying model 

transformations in the context of MDA. It is regarded as one 

of the most important standards since model transformations 

are proposed as major operations for manipulating models [1]. 

The three concepts that are used in the name of the QVT 

language as defined by OMG documents are: [2] 

Query: A query is an expression that is evaluated over a 

model. The result of a query is one or more instances 

of types defined in the source model, or defined by the 

query language. 

View: A view is a model which is completely derived from 

another model (the base model). There is a „live‟ 

connection between the view and the base model. 

Transformation: A model transformation is a process of 

automatic generation of a target model from a source 

model, according to a transformation definition. 

QVT languages are arranged in a layered architecture shown 

in Figure 1 [3]. The languages Relations and Core are 

declarative languages at two different levels of abstraction. 

The specification document defines their concrete textual 

syntax and abstract syntax. In addition, Relations language has 

a graphical syntax. Operational Mappings is an imperative 

language that extends Relations and Core languages. Relations 

language provides capabilities for specifying transformations 

as a set of relations among models. Core language is a 

declarative language that is simpler than the Relations 

language. One purpose of the Core language is to provide the 

basis for specifying the semantics of the Relations language. 

The semantics of the Relations language is given as a 

transformation RelationsToCore. This transformation may be 

written in the Relations language. 

Sometimes it is difficult to provide a complete declarative 

solution to a given transformation problem. To address this 

issue the QVT proposes two mechanisms for extending the 

declarative languages Relations and Core: a third language 

called Operational Mappings and a mechanism for invoking 

transformation functionality implemented in an arbitrary 

language (Black Box implementation). 

 

 

 

 

 

 

Fig 1: Layered Architecture of QVT Languages 

Depending on the four layer approach that provided by MDA 

(figure 2), we can imagine that we are working on level1 (M1) 

or level2 (M2), and the mapping specification will be done 

from PSM (QVT code) to PSM (BPEL4WS code) with the 

same level as a refinement in this case. 

  

 

Operatinal 

Mappings 

 

Relations 
 

 

Black 

Box 

 

Core 

extends 

extends 

extends 

extends 

RelationsToCore 
Transformation 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 15– No.7, February 2011 

2 

Fig 2: 4-Layers Architecture of MDA 

If we need to move in deep to understand how QVT 

Relational Language is working, we need firstly to know the 

state-of-art for Warren‟s Abstract Machine, which the Prolog 

Language has been built on, and we know that QVT is prolog-

like. Secondly we will discuss Deductive Database because 

QVT can be seen as it, finally we will display the repository to 

exchange models between MDA tools XML Metadata 

Interchange (XMI) because QVT absolutely need for XMI to 

store and retrieve models. 

2.1 Warren’s Abstract Machine 
The Warren Abstract Machine (WAM) is a language and 

machine architecture intermediate between Prolog and 

underlying computer. A Prolog program is transformed into 

WAM instructions by a compiler, and the resulting WAM 

code is either executed by bytecode emulator or further 

translated to machine instructions. 

WAM has several areas of memory and a number of 

registers. The memory areas are code area, control stack, copy 

stack, trail, and unification work area [4]. We find that QVT 

Relational Language is based on prolog liked code, that mean 

it is based indirectly on WAM. 

2.2 Deductive Database 
QVT can be seen as deductive database. The theory of 

deductive database is generally expressed in the relational data 

model. Permitted operations are select, project and join. 

Negation and recursion are allowed. A deductive database 

starts with a collection of instances of predicates (extensional 

database, or EDB) and a set of rules for creating instances of 

other predicates (the rules are the intentional database [IDB]). 

The instances created are the model of the IDB. One of the 

consequences of this is that the rules can be executed in any 

order. Those rules whose precondition is not satisfied will not 

create anything (will not fire). The IDB is executed 

systematically, possibly several times. Execution can stop 

when no rule can create any new bindings. This execution 

property depends on having no negative predicates in the IDB 

[5]. QVT does not in fact allow negative predicates. Both the 

checkonly and enforce clauses are positive. Negation is not 

allowed in the when clauses. Recursion is allowed. It is 

possible for a checkonly clause to test predicates that are 

created in enforce clauses. QVT can compute transitive 

closures. This means that care must be taken when translating 

a QVT transformation into a procedural workflow (like 

BPEL4WS). 

2.3 Extensible Markup Language (XML) 

and XML Metadata Interchange (XMI) 
To achieve a complete conversion there must be a complete 

definition of the source model to the goal of transformation 

between the model rules, the transformation rules are 

common, there is no need actual conversion to be as a model. 

Mapping model is the model required for the conversion of 

model members in the definition of the relationship between 

the mapping, which provides transformation rules and 

standards. MDA provides a method of mapping two models: 

the type of mapping and example of mapping. Depending on 

the two mapping methods, MDA gives two basic method of 

model conversion: the type of the Mapping model conversion 

methods and the model example converting mapping methods. 

XML is a meta language, the user can be used to create 

their own need and other tag language, which makes the XML 

application to quickly introduce to the various domain. XML 

allows users defined instances, defined examples and marked 

their property and the use of tags and attributes to make an 

example. XML Schema is that source model, which is based 

on the XMI generation, examples of the model is based on 

XML and XMI document conversion. 

 

aBook 

 

+title:   String 

Book 

+title =    “MDA” 

:Book 

attribute class instance 

class 

M0 (Run Time Instances) 

M1 (User Model) 

M2 (UML) 

M3 (MOF) 

Instance of  

Instance of  Instance of  Instance of  Instance of  

Instance of  Instance of  Instance of  

Photocopy  

Classifier 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 15– No.7, February 2011 

3 

XMI is based on the XML metadata exchange, XMI 

specification provides a standard method that mapping of the 

object model and the example model become XML. Through 

the application of XMI standards, which can complete UML 

model elements to the XML mapping. XMI is a standard that 

the UML model definition automatically generated XML 

DTD and Schema. 

Based on the previous tag language, the object and other 

objects associate with the existence of many difficulties, 

which can be resolved in the XMI. In addition, XMI based on 

the characteristics of XML, that means metadata and 

examples of their elements content can coexist in the same 

document. It allows applications that can be easily passed its 

meta-data to understand the examples. At the same time, XMI 

self-description nature and characteristics of synchronization, 

which is why XMI based on the exchange the models, for that 

it is so important in the distributed and heterogeneous 

systems. XMI comply with standard rules to generate, the 

MOF model example generates DTD or Schema, the 

definition of the rules of generation, UML model example 

converting to XML documents [6]. 

QVT relational language needs a repository to render 

instances of both source model and target model, which must 

be with XMI format. 

 

 

 

 

 

 

 

 

Fig 3: Model Based on XMI Mapping Ruler to Generate XML 

Schema 

3. MODEL TRANSFORMATION 
Development of two models instead of one (as in standard 

approaches) implies supplementary effort and thus reduces 

MDA efficiency. This is a serious weakness, which can 

overbalance all advantages of this approach. However, MDA 

developers stress that, after a PIM has been constructed, the 

process of platform-dependent system development can 

essentially be automated [7]. These two models present the 

same system and, consequently, have much in common. To 

obtain a PSM, one should describe in what way different 

constructions of the system are mapped from one model to 

another. Hence, it is necessary to define a set of 

transformations that allows converting a source model that 

corresponds to one view of the system into the model that 

corresponds to another view of the same system. Each of these 

views consists of its own set of notions and elements that are 

typical of specific technological platform. If model 

transformation is described in some formal language and there 

exists an algorithm for its automated execution, then it is 

called model transformation definition [8]. 

To understand model transformation very well, let‟s consider 

we have model a (Ma) and another model b (Mb). For each 

model there must be an existent metamodel compatible with 

MOF [9], that mean we must have metamodel a (MMa) and 

metamodel b (MMb). Now we must consider that (if we need 

to transform Ma → Mb) the transformation from model a to 

model b is model itself (we can call Mt), and we can formulate 

this like Mt: Ma→Mb, which Mt is a model written in the 

same language of Ma and Mb metamodel. Obviously since Mt 

is a model, we postulate the existent of a generic 

transformation metamodel MMt, which would similar to any 

other MOF based MDA metamodel [10]. For that we find that 

QVT as a model transformation language thus it has a 

metamodel compatible with MOF. Figure 4 try to explain the 

definition of model transformation from the perspective of 

metamodel, and the place of transformation language (QVT in 

this case) compared with the concept of 4-layers Architecture 

of MDA. 

 

 

 

 

 

 

 

 

 

 

 

Fig 4: The Place of QVT Transformation Language [10] 

4. BPEL4WS 
Web services provide the basic technical platform required for 

application interoperability. They do not, however, provide 

higher level control, such as which web services need to be 

invoked, which operations should be called and in what 

sequence. Nor do they provide ways to describe the semantics 

of interfaces, the workflows, or e-business processes. Business 

Process Execution Language for Web Services (BPEL4WS or 

BPEL for short) [11] is the missing link to assemble and 

integrate web services into a real business process BPEL4WS 

standardizes process automation between web services. This 

applies both within the enterprise, where BPEL4WS is used to 

integrate previously isolated systems, and between enterprises, 

where BPEL4WS enables easier and more effective 

integration with business partners (see Figure 5). In providing 

a standard descriptive structure BPEL4WS enables enterprises 

to define their business processes during the design phase. 

Wider business benefits can flow from this through business 

process optimization, reengineering, and the selection of most 

appropriate processes. Supported by major vendors - including 

BEA, Hewlett-Packard, IBM, Microsoft, Novell, Oracle, SAP, 

Sun, and others - BPEL4WS is becoming the accepted 

standard for business process management [12]. 

BPEL allows specifying business processes and how they 

relate to Web services. This includes specifying how a 

business process makes use of Web services to achieve its 

goal, and it includes specifying Web services that are provided 

by a business process. Business processes specified in BPEL 

are fully executable and they are portable between BPEL 

conformant environments. A BPEL business process  

 

Object UML Model 

UML MetaModel 

MOF Model 

XMI document of using 

UML transformation 

XML 
Schema 

mapping ruler 

depend on 
depend on 

depend on 

generate 
depend on 

Save 
to 

 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 15– No.7, February 2011 

4 

 

Fig 5: The Basic Elements of BPEL 

interoperates with the Web services of its partners, whether 

these Web services are realized based on BPEL or not. 

Finally, BPEL supports the specification of business protocols 

between partners and views on complex internal business 

processes [13]. As any executable code language, BPEL has 

executable code model, figure 6 shows general abstract syntax 

of executable code models. 

Fig 6: Abstract Syntax of Executable Code Models 

5. THE SCENARIO 
We will consider how we can couple PIM to PSM and using 

QVT Relational Language to implement model transformation 

between two instance models, before that we must have 

mapping specification to specify what is correspondence for 

members of PIM and PSM. Finally (as a main contribution) 

we need to compile the QVT code to BPEL code (like in 

figure 7). 

There is another direction (Direction 1)to act this scenario 

make model transformation from one of UML diagrams 

(class, activity, or sequence diagram) as PIM to Business 

Process Model Notation (BPMN) as PSM and try to find 

standard tool to generate BPEL code directly. But in this 

direction there will be additional component that becomes an 

 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 15– No.7, February 2011 

5 

overhead for the process as whole. Figure 8 show these two 

directions. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 7: Compile from QVT to BPEL Using XMI Repository 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 8: Two Directions to Generate BPEL Code 

6. CASE STUDY 
We want to build Graph Editor (GE), which will allow us to 

specify a Simple State Machine (STM) [15]. GE will be 

sufficient to develop the design shown in Figure 9. The design 

is of an application in which Patients buy treatment card at the 

time they obtain a location on reservation list. When they are 

going to the pharmacy they will buy medication as it has been 

described in the prescription. Due to do more examinations, 

patients may be rescheduled on reservation waiting list. 

6.1 Step 1 
Create the metamodel of STM as PIM (figure 10). 

6.2 Step 2 
Create the metamodel of GE as PSM (figure 11). 

6.3 Step 3 
Specify the mapping between PIM metamodel and PSM 

metamodel. 

Table 1. Mapping Specification Between PIM & PSM 

PIM PSM 

State Node 

Transition 

ArcEnd, which will been specified by 

EndNotation attribute („Simple‟ if it‟s 

source node, or „None‟ if it‟s target) 

Event Arc 

6.4 Step 4 
Write QVT code to implement transformation from STM 

metamodel to GE metamodel (one direction). 

transformation STMGE(STM:PIM_STM, GE:GE_PSM){ 

key State {name}; 

key Transition {source, target, 

triggeredBy}; 

key Event {name}; 

key Node {nodeText}; 

key ArcEnd{arc}; 

key Arc {source, target}; 

top relation STMToGraph { 

n : String; 

checkonly domain STM s :PIM_STM::STM 

{name = n}; 

enforce domain GE g :GE_PSM::Graph 

{name = n}; 

} 

top relation StateToNode{ 

n, ns : String; 

checkonly domain STM s:PIM_STM::State{ 

stm = st : PIM_STM::STM {name = n}, 

 

 

BPEL4WS 
Code 

QVT 
Code 

XMI 

Compile to 

 

 

Generate 

UML 
Model 

BPMN 
Model 

BPEL4WS 
Code 

QVT 
Code 

Mapping 

Compile to 

Direction1 

Direction2 
 

 

More 
Examination 

 
Patient 

wishing to 
treatment 

 
Patient’s 

reservation 
list 

 
Patient Taking 
Prescription 
Medication 

 Bought 
Medication  

 Person in 
Good Health 

Request for 
Diagnosis 

Go to the 
Pharmacy 

Taking the 
Medication 

Feel Sick 

Reservation 

 

Fig 9: Simple State Machine to Describe Patient Treatment Design 



International Journal of Computer Applications (0975 – 8887) 

Volume 15– No.7, February 2011 

6 

Fig 10: STM Metamodel (PIM) 

Fig 11: GE Metamodel (PSM) 

 

name = ns}; 

enforce domain GE nd : GE_PSM::Node{ 

graph = gr : GE_PSM::Graph {name = n}, 

shape = 'circle', nodeText = ns 

}; 

when { 

STMToGraph (st, gr); 

} 

} 

top relation TransitionToArc{ 

ng : String; 

checkonly domain STM s: 

PIM_STM::Transition{ 

stm = st : PIM_STM::STM {}, 

source = so : PIM_STM::State {}, 

target = ta : PIM_STM::State{} 

}; 

enforce domain GE a : GE_PSM::Arc{ 

graph = gr :GE_PSM::Graph {}, 

line = 'thin', 

source = sr : GE_PSM::ArcEnd { 

arrowHead = 'none', 

node = no : GE_PSM::Node {} 

--arc = a : GE_PSM::Arc {} 

}, 

target = tr : GE_PSM::ArcEnd { 

arrowHead = 'simple', 

node = nta : GE_PSM::Node{} 

arc = a : GE_PSM::Arc {} 

} 

}; 

when { 

STMToGraph (st, gr); 

StateToNode(so, no); 

StateToNode(ta, nta); 

} 

} 

 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 15– No.7, February 2011 

7 

top relation EventToArc{ 

n : String; 

checkonly domain STM tr : 

PIM_STM::Transition{ 

triggeredBy = e:PIM_STM::Event{name=n} 

enforce domain GE a: 

GE_PSM::Arc{arcText=n}; 

when { 

TransitionToArc(tr, a); 

} 

} 

} 

6.5 Last Step 
Apply the compiler program to compile QVT code to BPEL 

code. 

7. CONCLUSION 
In this paper we propose an optimized method to integrate 

model transformation of MDA with web services when 

compiling QVT Relational Language code to BPEL4WS 

code, and if this work is done perfectly, we sure that it will be 

a good contribution to make a valuable changing in MDA 

infrastructure. Also it can open a new direction to apply other 

programming concepts beside compiler design concept. 

8. REFERENCES 
[1] G. Wachsmuth, “Modelling the Operational Semantics of 

Domain-Specific Modelling Languages,” Structure, 2008, 

pp. 506-520. 

[2] I. Kurtev, “State of the Art of QVT : A Model 

Transformation Language Standard,” Data Engineering, 

2008, pp. 377-393. 

[3] M.A.O. Mukhtar and A. Abdullah, “Mapping of Behavior 

Model using Model-Driven Architecture,” International 

Journal, vol. 13, 2011, pp. 35-39. 

[4] C. Beierle, “Logic programming with typed unification 

and its realization on an abstract machine,” IBM Journal 

of Research and Development, vol. 36, 2010, pp. 375-390. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[5] S. Mallet and M. Ducass, “Myrtle : A Set-Oriented Meta-

Interpreter Driven by a „ Relational ‟ Trace for Deductive 

Databases Debugging,” 1999, pp. 328-330. 

[6] Y. Xiao-mei, “Mapping Approach for Model 

Transformation of MDA based on XMI / XML Platform,” 

Methods, 2009. 

[7] M.B. Kuznetsov, “UML model transformation and its 

application to MDA technology,” Programming and 

Computer Software, vol. 33, Feb. 2007, pp. 44-53. 

[8] X. Qafmolla, “Automation of Web Services Development 

Using Model Driven Techniques,” Architecture, vol. 3, 

2010, pp. 190-194. 

[9] O.M.G. (OMG), “Meta Object Facility ( MOF ) Core 

Specification,” Management, 2006. 

[10] A. Evans and J.S. Willans, “Metamodelling for 

MDA (First International Workshop) Proceeding,” 

Language, 2003. 

[11] T. Andrews, F. Curbera, Y. Goland, and D. Roller, 

Business Process Execution Language for Web Services, 

2003. 

[12] M.B. Juric, Business Process Execution Language 

for Web Services BPEL and BPEL4WS 2nd Edition 

"Abstract", Packt Publishing, 2006. 

[13] F. Leymann and D. Roller, “Modeling business 

processes with BPEL4WS,” Information Systems and e-

Business Management, vol. 4, Nov. 2005, pp. 265-284. 

[14] R. Hauser and J. Koehler, “Compiling Process 

Graphs into Executable Code,” 2004, pp. 317-336. 

[15] R.M. Colomb, “Developing Methods for Using 

Model-Driven Architecture to Develop Quality Software 

Products at Low Cost Entirely by Re-Use of Existing 

Components,” vol. Funded Pro, 2007, p. 15.  

 


