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ABSTRACT 

 
Fuzzy logic provides a formal framework for constructing 
systems exhibiting both good numeric performance (precision) 
and linguistic representation (interpretability). Fuzzy 
modeling—meaning the construction of fuzzy systems—is an 

arduous task, demanding the identification of many parameters. 
This paper analyses the fuzzy-modeling problem and different 
approaches to coping with it, focusing on evolutionary fuzzy 
modeling— the design of fuzzy inference systems using 
evolutionary algorithms. The purpose of this paper is twofold. 
We first provide an overview of the standard approach to 
constructing a fuzzy control system and then identify a wide 
variety of relevant system modeling techniques. The later part of 
the paper deals with discussing Fuzzy modeling problem – curse 

of dimensionality and techniques to solve the problem. The 
paper provides an introduction to the use of fuzzy sets and fuzzy 
logic for the approximation of functions and modeling of static 
and dynamic systems. The concept of a fuzzy system is first 
explained. Afterwards, the motivation and practical relevance of 
fuzzy modeling are highlighted. 
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1. FUZZY SYSTEMS 
Fuzzy set theory was proposed by Zadeh, ―A fuzzy set A in X is 

characterized by a membership function fA(x) which associates 

with each point in X a real number in the interval [0,1], with the 

value of fA(x) at x representing the ‗grade of membership‘ of x 

in A‖. The fuzzy set [1] concept intends to capture the 

vagueness to describe concepts, objects, events, phenomena or 

statements.  

Fuzzy logic deals with uncertainty in engineering by attaching 

degrees of certainty to the answer to a logical question which is 

commercial and practical. Commercially, fuzzy logic has been 

used with great success to control machines and consumer 

products. In the right applications fuzzy logic systems are simple 

to design, and can be understood and implemented by non-

specialists in control theory. Applications of Fuzzy systems vary  

in wide range starting from Environmental control (Air 

conditioners, Humidifiers), Domestic goods (Washing machines, 

Vacuum cleaners, toasters, microwave ovens, refrigerators), 

consumer electronics (television, photocopiers, cameras, HI-fi 

systems) to Automotive systems (Vehicle climate control, 

automatic gearboxes, four-wheel steering, seat/mirror control 

systems). 

1.1 Fuzzy Logic – A three-step process 

How to do Fuzzy logic is an interesting question. The answer to 

it is a three-step process: (1) Classification; (2) Fuzzy decision 

blocks, and (3) Defuzzification. 

1.1.1 Classification. 
The first step is to convert the signal into a set of fuzzy 

variables. This is called fuzzy classification or fuzzification. It is 

done by giving values to each of a set of membership functions. 

The values for each membership function are labeled and 

determined by the original measure signal and the shapes of the 

membership functions. A common fuzzy classifier splits the 

signal x into five fuzzy levels:- 

a) LP:  x is large positive. 

b) MP: x is medium positive. 

c) S:     x is small 

d) MN: x is medium negative. 

e) LN:  x is large negative 

 
Fig.1.Measuring membership levels 
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1.1.2 Fuzzy decision blocks. 
Fuzzy control uses fuzzy equivalents of logical AND, OR and 

NOT operations to build up fuzzy logic rules. The operations are 

similar to their usual meanings.  

AND rule applies if UA is the membership of class A for a 

measured variable UB and is the membership of class B for 

another measure variable, then fuzzy AND is obtained as the 

minimum of the two membership values. 

OR rule applies if UA is the membership of class A for a 

measured variable UB and is the membership of class B for 

another measure variable, then fuzzy AND is obtained as the 

maximum of the two membership values. 

NOT rule applies for membership UA as 1 – UA. 

 

1.1.3 Defuzzification. 
The last step in building fuzzy logic system is turning the fuzzy 

variables generated by the fuzzy logic rules into a real signal 

again. The fuzzy logic process which does this is called 

defuzzification because it combines the fuzzy variables to give a 

corresponding real signal which can then be used to perform 

some action.   

A five level defuzzifier block will have five outputs 

corresponding to five actions: 

a) LP: Output signal large (positive). 

b) MP: Output signal medium (positive). 

c) S:     Output signal small. 

d) MN: Output signal medium (negative). 

e) LN:  Output signal large (negative). 

 

1.2 Components of Fuzzy systems 

A fuzzy system is a computing framework based on the concepts 

of theory of fuzzy sets, fuzzy rules and fuzzy inference. Four 

components of fuzzy systems exist: a knowledge base, a 

fuzzification interface, an inference engine and a defuzzification 

interface. 

 

 The knowledge base consist of a rule base defined in 
terms of fuzzy rules, and a data base that contains the 
definitions of the linguistic terms for each input and 
output linguistic variable.  

 The fuzzification interface transforms the (crisp) input 
values into fuzzy values, by computing their 
membership to all linguistic terms defined in the 
corresponding input domain.  

 The inference engine performs the fuzzy inference 
process, by computing the activation degree and the 
output of each rule.  

 The defuzzification interface computes the (crisp) 
output values by combining the output of the rules and 
performing a specific transformation. 

 

2. FUZZY CONTROL APPROACHES 
In this section, fuzzy logic controller [2] design from a model-
free approach (without using a mathematical model of the 
system to be controlled) and from a model-based approach is 
discussed. Usually, these fuzzy controllers can be used to 
directly replace a conventional control scheme in a control loop, 
so as to perform the control actions independently. 
 

2.1 A Model-Free approach 
This general approach of fuzzy logic [3] control works for 
trajectory tracking for a conventional, even complex, dynamic 
system that does not have a precise mathematical model. 

 
The basic setup is shown in Fig. 4, where the plant is a 
conventional system without a mathematical description and all 
the signals (the setpoint sp, output y(t), control u(t), and error 
e(t) = sp – y(t) ) are crisp. The objective here is to design a 
controller to achieve the goal e(t) → 0 as t → ∞, without any 

Fig.2.Block diagram of Defuzzifier 

 

Fig.3.Block diagram of Defuzzifier 

 

Fig.3.Main components of fuzzy systems 
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mathematical formula of the plant except for the assumption that 
its inputs and outputs are measurable by sensors on line. 
 

 
 
If the mathematical formulation of the plant is unknown, how 
can one develop a controller to control this plant? Fuzzy logic 
approach turns out to be advantageous in this situation, since it 

does not need mathematical description about the plant to 
complete the design of a working controller: it only uses the 
plant inputs and outputs (but not the state variables, nor any 
other information) which are usually available through sensors 
on line.  
The fuzzification module transforms the physical values of the 
current process signal (namely, the error signal e in Fig. 4) into a 
fuzzy set consisting of an interval of real numbers (for the value-
range of the input signals) and a membership function which 

describes the grades of belongings of the input signals to this 
interval, at each instant of the control process. The purpose of 
this fuzzification unit is to make the input physical signal 
compatible with the fuzzy logic control rules located in the core 
of the controller. Here, the interval and membership function are 
both chosen by the designer according to his knowledge about 
the nature and properties of the given problem. 
 

2.2 A Model-Based approach 
Fuzzy logic controllers can be designed even without any 

information about the structure of the system for setpoint 
tracking problems, provided that the system input-outputs (but 
not the states) can be measured and used on-line. Note that 
input-output information is also essential for many conventional 
system identification techniques [4], which can be obtained 
through sensors. 

 
       If a mathematical model of the system, or a fairly good 
approximation of it, is available, one may be able to design a 

fuzzy logic controller with better results such as performance 
specifications and guaranteed stability. This constitutes a model-
based fuzzy control approach. 
 
       Sometimes, the above fuzzy model is not available in 
applications, namely, there is no complete knowledge about the 
local linear system matrices, except some time-series data 
obtained from the underlying system. In this case, fuzzy system 

identification, or fuzzy system modeling, becomes necessary. 
 

2.3 Adaptive Fuzzy control 
In a direct adaptive fuzzy controller, parameters are directly 

adjusted according to some adaptive law, to reduce (ideally 
eliminate) the difference between the output of the plant and 
that of the reference model. Parameters in such a fuzzy 
controller are those of the membership functions and/or of the 
rules given in the fuzzy system. In adaptive control, these 
parameters are automatically tuned during the control process by 
an adaptation law. 
A direct adaptive fuzzy controller can be designed in three steps: 

(i) determine some fuzzy sets whose membership functions 
cover the entire operational space for the required control; (ii) 
use some fuzzy IF-THEN rules to construct an initial rule base 
for the controller, in which some parameters are free to change; 
(iii) develop an adaptive law, based on the Lyapunov stability 
theory for control and stabilization, to adjust the free parameters 
[5, 6]. 
 

3. FUZZY SYSTEM MODELING 
Fuzzy modeling is a new modeling paradigm, and fuzzy models 

are nonlinear dynamic models. Compared with the conventional 
black-box modeling techniques that can only utilize numerical 
data, the uniqueness of a fuzzy modeling approach lies in its 
ability to utilize both qualitative and quantitative information. 
This advantage is practically important and even crucial in many 
circumstances. Qualitative information is human modeling 
expertise and knowledge, which are captured and utilized in the 
form of fuzzy sets, fuzzy logic and fuzzy rules. 
 

The basic objective of system modeling is to establish an input-
output representative mapping that can satisfactorily describe 
the system behaviors over the entire operational space. 
 
Conventional system modeling techniques suggest to construct a 
model by using the available input-output data based upon 
empirical or physical knowledge about the structure and/or order 
of (non)linearity of the unknown system; which usually leads to 

the determination of a set of differential or difference equations 
[4]. These kinds of approaches are effective only when the 
underlying system is relatively simple and mathematically well-
defined. They often fail to handle complex, uncertain, vague, ill-
defined physical systems because they always try to find a 
precise function or a fixed structure to fit to the assumed system; 
unfortunately most real-world problems do not obey such 
simple, idealized, and subjective mathematical rules. 

 
A perfect modeling methodology can never be found; yet a 
better approach is quite possible. According to the 
incompatibility principle [7], as the complexity of a system 
increases, human‘s ability to make precise and significant 
statements about its behaviors diminishes, until a threshold is 
reached beyond which precision and significance become almost 
mutually exclusive characteristics. Under this principle, Zadeh 

proposed a modeling method of human thinking with linguistic 
fuzzy set rather than crisp numbers [7, 8], which eventually 
leads to the development of various fuzzy modeling techniques 
later on. System modeling involves at least two basic parts: 
structure identification and parameters identification. 
 

Fig.4. A typical set point tracking control system 
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3.1 Structure identification 
In structure identification of a fuzzy model, the first step is to 

select some appropriate input variables from the collection of 
possible system inputs. The second step is to determine the 
number of membership functions for each input variable. This 
process is closely related to the partitioning of input space. Input 
space partitioning methods are useful for determination of such 
structures. 

3.1.1 Grid Partitioning 
Fuzzy grids can be used to generate fuzzy rules based on system 

input-output training data. Also, a one-pass build-up procedure 
is possible that can avoid the time-consuming learning process 
[6]. The performance depends heavily on the definition of the 
grid. In general, the finer the grid is, the better the performance 
will be. However, it is likely that the fuzzy grid regions used in 
this approach will not cover all training data, and so some 
regions remain undefined. Adaptive fuzzy grid partitioning can 
be used to refine and even optimize this process. In the adaptive 
approach, a uniformly partitioned grid is first used for 

initialization. As the process goes on, the parameters in the 
antecedent membership functions will be adjusted. 
Consequently, the fuzzy grid evolves. The gradient descent 
method can then be used to optimize the size and location of the 
fuzzy grid regions and the overlapping degree among them. For 
this grid partition method, there is a major drawback: the 
performance suffers from an exponential explosion of the 
number of inputs or membership functions as the input variables 

increase. For example, a fuzzy model has 5 inputs and 5 
membership functions associated with each input would result in 
55 = 3125 IF-THEN rules. This is referred to as the ―curse of 
dimensionality,‖ and is a common issue for most partitioning 
methods. 
 

3.1.2 Tree partitioning 
The tree partitioning results from a series of guillotine cuts. 
Each region is generated by a guillotine cut, which is made 

entirely across the subspace to be partitioned. At the (k – 1)st 
iteration step, the input space is partitioned into k regions. Then 
a guillotine cut is applied to one of these regions to further 
partition the entire space into (k + 1) regions. There are several 
strategies for deciding which dimension to cut, where to cut at 
each step, and when to stop. This flexible tree partitioning 
algorithm relieves the problem of curse of dimensionality. 
However, more membership functions are needed for each input 

variable as a comparison, and these membership functions 
usually do not have clear linguistic meanings. Moreover, the 
resulting fuzzy model consequently is less descriptive. 
 

3.1.3 Scatter partitioning 
This method extracts fuzzy rules directly from numerical data 
[9]. Suppose that a one-dimensional output, y, and an m- 
dimensional input vector, x, are available. First, one divides the 
output space into n intervals as follows: 

[y0, y1], [y1 y2] . . . [yn-1 yn], 
where the ith interval is labeled as ―output interval i.‖ Then, 
activation hyperboxes are determined, which define the input 
region corresponding to the output interval i, by calculating the 
minimum and maximum values of the input data for each output 
interval. 

If the activation hyperbox for the output interval i overlap with 
the activation hyperbox for the output interval j, then the 
overlapped region is defined as an inhibition hyperbox. If the 
input data for output intervals i and/or j exist in the inhibition 
hyperbox, within this inhibition hyperbox one or two additional 

activation hyperboxes will be defined. Moreover, if two 
activation hyperboxes are defined and they overlap, an 
additional inhibition hyperbox is further defined. This procedure 
is repeated until overlapping is resolved. 
 

3.2 Parameters identification 
Parameter identification means identification of optimal 
parameters of fuzzy sets in the IF and the THEN parts of each 
rule by various optimization techniques. Sometimes, structure 
and parameters are identified under the same framework through 

fuzzy modeling. There are virtually many different approaches 
to modeling a (control) system using the fuzzy set and fuzzy 
system theories (e.g., [10, 11]); but only the classical least-
squares optimization method and the general Genetic Algorithm 
(GA) optimization technique are generally used. The main 
reason is that the least-squares method is perhaps the oldest and 
most popular method for optimization (and, hence, for system 
modeling) based on measurement data, and the GA optimization 
approach is very general and effective, competitive with many 

other successful non-fuzzy types of optimization-based 
modeling methods such as artificial neural networks, but has 
some special features that are advantageous for optimal fuzzy 
system modeling. 
 

4. THE FUZZY MODELING PROBLEM 
Fuzzy modeling is the task of identifying the parameters of a 
fuzzy inference system so that a desired behavior is attained 
[12]. Note that, due to linguistic and numeric requirements, the 
fuzzy-modeling process has generally to deal with an important 
trade-off between the accuracy and the interpretability of the 
model. In other words, the model is expected to provide high 
numeric precision while incurring as little a loss of linguistic 

descriptive power as possible. With the direct approach a fuzzy 
model is constructed using knowledge from a human expert 
[12]. This task becomes difficult when the available knowledge 
is incomplete or when the problem space is very large, thus 
motivating the use of automatic approaches to fuzzy modeling. 
One of the major problems in fuzzy modeling is the curse of 
dimensionality, meaning that the computation requirements 
grow exponentially with the number of variables. 

 
The parameters of a fuzzy inference system can be classified 
into the four categories presented below: 
 
1. Logical parameters. Functions and operators which define 
the type of transformations undergone by crisp and fuzzy 
quantities during the inference process. They include the shape 
of the membership functions, the fuzzy logic operators applied 

for AND, OR, implication, and aggregation operations, and the 
defuzzification method. 
 
2. Structural parameters. Related mainly with the size of the 
fuzzy system. Includes the number of variables participating in 
the inference, the number of membership functions defining 
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each linguistic variable, and the number of rules used to perform 
the inference. 
 
3. Connective parameters. Related with the topology of the 
system, these parameters define the connection between the 

different linguistic instances. They include the antecedents, the 
consequents, and the weights of the rules. 
 
4. Operational parameters. These parameters define the 
mapping between the linguistic and the numeric representations 
of the variables. They characterize the membership functions of 
the linguistic variables. 
Structural, connective, and operational parameters may be either 

predefined, or obtained by synthesis or search methodologies. 
Generally, the search space, and thus the computational effort, 
grows exponentially with the number of parameters. Therefore, 
one can either invest more resources in the chosen search 
methodology, or infuse more a priori, expert knowledge into the 
system (thereby effectively reducing the search space). The 
aforementioned tradeoff between accuracy and interpretability is 
usually expressed as a set of constraints on the parameter values, 

thus complexifying the search process. 
 

4.1 Approaches and Techniques 
The first fuzzy modeling works were very similar to, and 
inspired by, the knowledge engineering methods used in expert 
systems. They implemented Zadeh‘s ideas by trying to build a 
fuzzy model directly from the expert knowledge in what we call 
the direct approach. The increasing availability of input-output 
data of the modeled processes, which is not specifically used to 
determine the structure or the parameters of the fuzzy model in 
the direct approach, together with the inherent difficulty to 

collect expert‘s knowledge, motivated the use of more automatic 
approaches to fuzzy modeling, in which only a part of the fuzzy 
model is built from a priori knowledge. There exist a great 
number of fuzzy modeling methods differing in the search 
strategy they apply and in the amount of parameters they can 
search for—related directly with the part of the system they 
require to be pre-defined. 
 

4.1.1 The direct approach to Fuzzy modeling 
In this approach, the system is first linguistically described, 
based on the expert‘s a priori knowledge. It is then translated 
into the formal structure of a fuzzy model following the steps 
proposed by Zadeh [13]: 
1. Selection of the input, state, and output variables (structural 
parameters); 
2. Determination of the universes of discourse (structural 
parameters); 

3. Determination of the linguistic labels into which these 
variables are partitioned (structural parameters); 
4. Definition of the membership functions corresponding to each 
linguistic label (operational parameters); 
5. Definition of the rules that describe the model‘s behavior 
(connective parameters); 
6. Selection of an adequate reasoning mechanism (logic 
parameters); 

7. Evaluation of the model adequacy. 
 

Unfortunately, there is no general methodology for the 
implementation of the direct approach, which is more an art of 
intuition and experience than precise theory. This approach has 
been, however, successfully used since the first fuzzy system 
applications [14, 15] to present-day research [16, 17, and 18]. 

One simple, and rather intuitive, improvement of the direct 
approach is the use of quantitative input-output information to 
update the membership-function values and/or the rule weights 
in order to fine-tune the knowledge contained in the fuzzy model 
[19]. 

4.1.2 Approaches based on classic identification 
algorithms 
A fuzzy model is a special type of nonlinear model. In this 
context, fuzzy modeling may be done applying classic non-
linear identification methods. These methods deal with an 
iterative, convergent, estimation of a set of numeric parameters, 
which are applied to a, usually pre-defined, model structure in 

order to approximate an expected behavior. In these fuzzy 
modeling approaches, the general structure of the fuzzy system 
(i.e., logic and structural parameters) is pre-defined, while the 
rest of the system (i.e., connective and operational parameters) is 
estimated.  
 
The simplest methods apply linear least-squares parameter 
estimation as they assume that the parameters appear in a linear 

fashion into the model. Such linearity assumption limits their 
applicability in fuzzy modeling and asks for the development of 
methods applying nonlinear least-squares parameter estimation 
[20]. Recent works using this approach, apply identification 
methods such as orthogonal least-squares [21], gradient descent 
[22], quasi- Newton [23], Levenberg-Marquardt [24], or auto-
regressive (AR) modeling [25]. 
 

4.1.3 Constructive learning approaches 
In this approach, the a priori expert knowledge serves to direct 
the search process instead of being used to directly construct a 
part of, or the whole, fuzzy system. After an expert-guided 
definition of the logic parameters and of some of the structural 
parameters (mainly relevant variables and their universes of 
discourse), a sequence of learning algorithms is applied so as to 
progressively construct an adequate final fuzzy model. Most of 
the methods belonging to this class begin by identifying a large 

fuzzy system—even systems with one rule for each training 
case—satisfying certain performance criteria. They then apply a 
pruning strategy to reduce the size of the system while keeping 
an acceptable performance. Recent examples of this kind of 
approaches are presented by Espinosa and Vandewalle [26] and 
by Jin [27]. Other methods, as for example that of Rojas et al. 
[28], start with simple fuzzy systems and then iteratively 
increase the system‘s complexity, by adding new rules and 
membership functions, until a specified threshold of 

performance or of size is reached. 

 

4.1.4 Bio-inspired approaches: neuro-fuzzy and 
evolutionary-fuzzy 
Artificial neural networks, evolutionary algorithms, and fuzzy 
logic belong to the same family of bio-inspired methodologies. 
Indeed, they model in different extents natural processes such as 

evolution, learning, or reasoning. The dynamic and continuously 
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growing research on these subjects, have allowed identifying the 
strengths and weaknesses of each methodology, motivating a 
relatively recent trend to combine them in order to take 
advantage of their complementarities. In fuzzy modeling, such 
combinations have originated hybrid techniques known as 

neuro-fuzzy systems and evolutionary fuzzy modeling. 
 
Three main streams can be identified in the research on hybrid 
neural-fuzzy systems: 

 
 Fuzzy-rule extraction from neural networks. This 

approach attempts to extract, in the form of fuzzy 
rules, the knowledge embedded in trained neural 

networks [29, 30, and 31]. The main drawback of 
these techniques is that the access to the knowledge 
requires a previous rule-extraction phase. 

 Neuro-fuzzy systems. These are fuzzy inference 
systems implemented as neural networks, taking 
advantage of their structural similarity. The main 
advantage of this kind of representation is that such 
hybrid systems can be optimized via powerful, well-

known neural-network learning algorithms. ANFIS 
[32] is a well known neuro-fuzzy system consisting of 
a six-layer generalized network with supervised 
learning. Most of the current research on this area is 
derived from the original neuro-fuzzy concept, either 
in new flavors (i.e., by changing the network structure 
or the learning strategy) [33, 34, 35], or in adaptation 
of existing methods to face new hard problems. The 

main drawback of this approach is that the methods 
are intended to maximize accuracy, neglecting human 
interpretability. In many applications this is not 
acceptable. 

 
 Interpretability-oriented neuro-fuzzy systems. Recent 

families of neuro-fuzzy systems are constructed 
respecting certain interpretability-related constraints to 
keep permanent readability of the system during the 

learning process. One of the first steps towards 
interpretable neuro-fuzzy systems is represented by 
the suite of methods NEFCON, NEFCLASS, and 
NEFPROX [36, 37], based on a three-layer neuro-
fuzzy architecture whose synaptic weights are 
constrained to respect the integrity of the fuzzy 
linguistic variables. 

 

4.2 Evolutionary Fuzzy Modeling 
Evolutionary algorithms are used to search large, and often 
complex, search spaces. They have proven worthwhile on 
numerous diverse problems, able to find near-optimal solutions 
given an adequate performance (fitness) measure. Fuzzy 
modeling can be considered as an optimization process where 

part or all of the parameters of a fuzzy system constitute the 
search space. Works investigating the application of 
evolutionary techniques in the domain of fuzzy modeling first 
appeared more than a decade ago [38, 39]. These focused mainly 
on the tuning of fuzzy inference systems involved in control 
tasks (e.g., cart-pole balancing, liquid-level system, and 
spacecraft rendezvous operation). 
 

Depending on several criteria—including the available a priori 
knowledge about the system, the size of the parameter set, and 
the availability and completeness of input-output data— 
artificial evolution can be applied in different stages of the 
fuzzy-parameter search. Three of the four categories of fuzzy 

parameters can be used to define targets for evolutionary fuzzy 
modeling: structural, connective, and operational parameters. As 
noted before, logical parameters are usually predefined by the 
designer based on experience. The aforementioned categories 
lead to the definition of three levels of fuzzy modeling: 
knowledge tuning, behavior learning, and structure learning, 
respectively. 
 

4.3 Interpretability considerations 
As mentioned before, the fuzzy-modeling process has to deal 

with an important trade-off between the accuracy and the 
interpretability of the model. The model is expected to provide 
high numeric precision while incurring as little a loss of 
linguistic descriptive power as possible. Currently, there exist no 
well-established definitions for interpretability of fuzzy systems, 
mainly due to the subjective nature of such a concept. However, 
some works have attempted to define objective criteria that 
facilitate the automatic modeling of interpretable fuzzy systems 
[40, 41]. The fuzzy system processes information in three 

stages: the input interface (fuzzifier), the processing stage 
(inference engine), and the output interface (defuzzifier). The 
interface deals with linguistic variables and their corresponding 
labels. These linguistic variables define the semantics of the 
system. The inference process is performed using fuzzy rules 
that define the connection between input and output fuzzy 
variables. These fuzzy rules define the syntax of the fuzzy 
system. Fuzzy modelers must thus take into account both 

semantic and syntactic criteria to obtain interpretable systems. 
 

5. DISCUSSION 
Fuzzy modeling is a framework, in which different modeling 
and identification methods are combined, providing, on the one 
hand, a transparent interface with the designer or the operator 
and, on the other hand, a flexible tool for nonlinear system 
modeling and control, comparable with other nonlinear black-
box techniques. The rule-based character of fuzzy models allows 
for a model interpretation in a way that is similar to the one 

humans use. Conventional methods for statistical validation 
based on numerical data can be complemented by the human 
expertise that often involves heuristic knowledge and intuition. 
Fuzzy models can be used for various aims: analysis, design, 
control, monitoring, supervision, etc. Approaches have been 
presented to switch from one model representation to another 
one, which is more apt for a certain interpretation, allowing a 
multifaceted use of a model based on one set of data. Rather 
than as a fully automated identification technique, fuzzy 

modeling should be seen as an interactive method, facilitating 
the active participation of the user in a computer-assisted 
modeling session. 
 
For modeling, the question is whether a fuzzy model can always 
be established which is capable of uniformly approximating any 
continuous, nonlinear physical system arbitrarily well. Recent 
theoretical work has led to affirmative answers to these 

qualitative questions. 
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