
International Journal of Computer Applications (0975 – 8887)
Volume 16– No.1, February 2011

6

Improving Performance in Load Balancing Problem on

the Grid Computing System

Prabhat Kr.Srivastava
MCA Department

IIMT College of Engineering
Greater Noida, India

Sonu Gupta
MCA Department

IIMT College of Engineering
Greater Noida, India

Dheerendra Singh Yadav
MCA Department

Dr. KNMIET
Modinagar, India

ABSTRACT

Load Balancing is a technique to improve resources, utilizing

parallelism, exploiting throughput managing and to reduce

response time through proper distribution of the application.

Load balancing strategies is always used for the emergence of

Distributed systems. Generally there are three type of phases

related to Load balancing i.e. Information Collection,

Decision Making, Data Migration.

Grid computing is a replica of distributed computing that uses

geographically and disperses resources. To increase

performance and efficiency, the Grid system needs competent

load balancing algorithms for the distribution of tasks. Load

balancing algorithms is of two types, static and dynamic. Our

projected algorithm is based on dynamic strategies.

Keywords
Information Gathering Policy, Firing Triggering Policy,

Hitting Selection Policy

1. INTRODUCTION
Grid computing is a type of parallel and distributed system

that enables the distribution, selection and aggregation of

geologically resources dynamically at run time depending on

their availability, capability, performance, cost, user quality-of

–self-service requirement [1].Grid computing, individual

users can retrieve computers and data, transparently, without

taking into account the location, operating system, account

administration, and other details. In Grid computing, the

details are abstracted, and the resources are virtualized. Grid

Computing should enable the job in question to be run on an

idle machine elsewhere on the network [2]. Grids functionally

bring together globally distributed computers and information

systems for creating a universal source of computing power

and information [3]. A key characteristic of Grids is that

resources (e.g., CPU cycles and network capacities) are

shared among various applications, and therefore, the amount

of resources available to any given application highly

fluctuates over time. Load balancing is a technique to enhance

resources, utilizing parallelism, exploiting throughput

improvisation, and to reduce response time through an

appropriate distribution of the application [4].

Load balancing algorithm are two type static and dynamic,

Static load balancing algorithms allocate the tasks of a parallel

program to workstations based on either the load at the time

nodes are allocated to some task, or based on an average load

of our workstation cluster. The decisions related to load

balance are made at compile time[5].

A few static load balancing techniques are Round robin

algorithm, Randomized algorithm, simulated annealing or

genetic algorithms, and Dynamic load balancing algorithms

make changes to the distribution of work among workstations

at run-time; they use current or recent load information when

making distribution decisions [6]. Multicomputers with

dynamic load balancing allocate/reallocate resources at

runtime based on no a priori task information, which may

determine when and whose tasks can be migrated [7].

As a result, dynamic load balancing algorithms can provide a

major improvement in performance over static algorithms.

However, this comes at the additional cost of collecting and

maintaining load information, so it is important to keep these

overheads within reasonable limits [8].

There are three major parameters which usually define the

strategy a specific load balancing algorithm will employ [9].

These three parameters answer three important questions:

 Who makes the load balancing decision

 What information is used to make the load

balancing decision, and

 Where the load balancing decision is made.

International Journal of Computer Applications (0975 – 8887)
Volume 16– No.1, February 2011

7

2. RELATED WORK
Various Load Balancing Algorithms are available now days

but they contain several drawbacks. Such type of problems

can be eradicated by our proposed dynamic load balancing

algorithm [10].

Comparison of Existing and newly Proposed Algorithm are:

 Information

Gathering

Policy

Firing

Triggering

Policy

Hitting

Selection

Policy

Existing

Load
Balancing

Load
Balancing

information is
composed

using periodic
approach

Load
Balancing is

triggered
based on

Queue Length

Task is
selected for
migration
using Job
Length as
criteria.

Proposed

Load
Balancing

Load
Balancing

information is
collected

using Activity
based

approach

Load
Balancer is

triggered
based on

Queue Length
and current
CPU Load

Task is
selected for

migration
based upon

CPU
consumption

of tasks

In Condor (Existing) based algorithm, Information Policy may

be fired by periodic approach while in Proposed algorithm it

may be Activity based.

Triggering Policy in Existing Algorithm is based on Queue

Length while in Proposed Algorithm it is based on Queue

Length and current CPU Length. Selection Policy in Existing

Algorithm is done by Selected Task may be migrated using

Job Length while in Proposed Algorithm Selection Policy

may be fired by Selected task which is migrated based upon

CPU Utilization.

Major purpose of our proposed algorithm is Time Complexity

i.e., in Proposed Algorithm time complexity is 3 while in

Existing Algorithm time complexity is more than newly

proposed algorithm. Execution time in .Net Framework using

our proposed algorithm is too much fast compared to existing

algorithms[11].

3. OUR PROPOSED ALGORITHM
In this paper we propose a dynamic load balancing algorithm

for improving performance of grid computing. In this there

are four basic steps: Monitoring workstation performance

(load monitoring), exchanging this information between

workstations (synchronization), Calculating new distributions

and making the work movement decision (rebalancing

criteria) Actual data movement (job migration). In proposed

load balancing algorithm the activities can be categorized as

following:

Arrival of any new job and queuing of that job to any

particular node, Completion of execution of any job, Arrival

of any new resource, Withdrawal of any existing resource.

Segment of code related to algorithm:-

Function: LoadBalancing_start

Return Type: Boolean

Start:

If (CPU Idle of Node is Min and Free Memory of Node is Min

and Queue Length of Node is Max)

HeavilyLoaded_Node

End if

If (CPU Idle of Node is Max and Free Memory of Node is

Max and Queue Length of Node is Min)

Lightlyloded_Node

End if

Migrate Heavy Loded_Node_Job to Lightly Loded_Node

End

Functions used in the above algorithm are:-

Activity_ happens (): this function return Boolean value.

If any of above defined activity occurs it returns true

otherwise it returns false.

LoadBalancing_start (): this function also return

Boolean value. If on the basis of given parameters (CPU

utilization and queue length) load balancing will be required it

will return true else it will return false. This function also

updates two lists: HeavilyLoaded_list and LightlyLoaded_list.

4. IMPLEMENTATION AND RESULTS
A Load Balancing component has been developed which

executes in simulated grid environment (i.e., Gridsim toolkit).

This application has been developed using ASP.NET 3.5 and

SQLServer 2005 database server. Following is the snapshot of

the index page.

International Journal of Computer Applications (0975 – 8887)
Volume 16– No.1, February 2011

8

Screen Shot 4.1: Home Page

It contains link to different pages: show jobs, show resources,

show allocation and show status. A click on one of the links

will link to the different pages.

Screen Shot 4.2: Show Job Page

Screenshot 4.2 shows two columns: first column is JobID and

second is job length. JobID is unique for each job submitted to

Grid. Length is the expected job time length given at the time

of submission.

Screen Shot 4.3: Show Resources Page

Screenshot 4.3 is the image of show resources page. This page

shows six fields: IPAddress (resource name), CPUSpeed,

CPUIdle, TotalMemory, FreeMemory and Queuelength.

Three fields CPUIdle, FreeMemory and Queuelength are

important because these fields are used to decide that

particular resource is heavily loaded or lightly loaded

resources and is shown in screen Shot 4.4. If any resource is

heavily loaded then the actual load balancing starts.

Screen Shot 4.4: Input Field format

International Journal of Computer Applications (0975 – 8887)
Volume 16– No.1, February 2011

9

Screen Shot 4.5: Show Allocation Page

Screenshot 4.5 shows three fields JobId, JobLength, Resource.

This is generated after allocation of job to resource.

Allocation is based on free resource according to requirement

of job that has been submitted to resource. This allocation

maximizes the resource utilization. In this screenshot

corresponding to each JobID, there is a resource name.

Screen Shot 4.6: Show Status Page

Screenshot 4.6 shows information about gathered about Load

Balancing. This page contains two Grids. First Grid contain

name of those resource which is heavily loaded and second

Grid contain those resources which are lightly loaded. These

two Grids are used to decide which resource will act sender

and which resource will act as receiver. Job will be migrated

from sender (heavily loaded) resource to receiver (lightly

loaded) resource if sufficient lightly loaded resources are

available then after load balancing no heavily loaded resource

will be available. Job from all heavily loaded resource will be

migrated to lightly loaded resource. This page also gives

information about which heavily loaded resource will

migrating the Job to which lightly loaded resource. In above

Screenshot resource 172.31.5.22 (name of resource) is heavily

loaded resource which has three Jobs. This Page has a link

button (i.e. perform load balancing) that performs the action

to migrating the job from heavily loaded resource to lightly

loaded resource, which is the main concept of our proposed

algorithm and is demonstrated in our developed application.

Screen Shot 4.7: Load Balancing Page

Screenshot 4.7: Load Balancing Page appears after Load

Balancing has been performed and job is migrated to resource

172.31.5.27. This is one particular case when heavily loaded

resource has been finalize and job which should be migrated

has been finalize and no heavily loaded resource is available

If no lightly resource is available then no migration will be

done.

5. CONCLUSION
Through this proposed algorithm, we have described multiple

aspects of load balancing algorithm and introduced numerous

concepts which illustrate its broad capabilities. Proposed

algorithm is definitely a promising tendency to solve high

demanding applications and all kinds of problems. Objective

of the grid environment is to achieve high performance

computing by optimal usage of geographically distributed and

International Journal of Computer Applications (0975 – 8887)
Volume 16– No.1, February 2011

10

heterogeneous resources.

But grid application performance remains a challenge in

dynamic grid environment. Resources can be submitted to

Grid and can be withdrawn from Grid at any moment. This

characteristic of Grid makes Load Balancing one of the

critical features of Grid infrastructure. There are a number of

factors, which can affect the grid application performance like

load balancing, heterogeneity of resources and resource

sharing in the Grid environment. In this we have focused on

Load Balancing and tried to present the impacts of Load

Balancing on grid application performance and finally

proposed an efficient Load Balancing algorithm for Grid

environment. Every Load Balancing algorithm implements

five policies. The efficient implementation of these policies

decides overall performance of Load Balancing algorithm. In

this work we analyzed existing Load Balancing algorithm and

proposed an enhanced algorithm which more efficiently

implements three out of five policies implemented in existing

Load Balancing algorithm. These three policies are:

Information Policy, Triggering Policy and Selection Policy.

Proposed algorithm is executed in simulated Grid

environment. Load Balancing is one of most important

features of Grid Middleware for efficient execution of

compute intensive applications. The efficiency of Load

Balancing Module overall decides the efficiency of Grid

Middleware.

6. REFERENCES

[1] Krishna rams Kenthapadi, Stanford University,

kngk@cs.stanford.edu and Grummet Singh Mankuy,

Google Inc., manku@google.com, Decentralized

Algorithms using both Local and Random Probes for

P2P Load Balancing.

[2] B. Yagoubi , Department of Computer Science, Faculty

of Sciences, University of Oran and Y. Slimani ,

Department of Computer Science, Faculty of Sciences of

Tunis, Task Load Balancing Strategy for Grid

Computing .

[3] Rajkumar Buyya , Grid Computing and Distributed

Systems (GRIDS) Lab., Department of Computer

Science and Software Engineering, University of

Melbourne, Australia and Manzur Murshed, Gippsland

School of comp and IT, Monash University, Gippsland

Campus , GridSim: a toolkit for the modeling and

simulation of distributed resource mgmt and scheduling

for Grid computing.

[4] Dazhang Gu, Lin Yang, Lonnie R. Welch ,Center for

Intelligent, Distributed and Dependable Systems ,School

of Electrical Engineering & Computer Science ,Ohio

University, A Predictive, Decentralized Load Balancing

Approach.

[5] Akshay Luther, Rajkumar Buyya, Rajiv Ranjan, and

Srikumar Venugopal, “Peer-to-Peer Grid Computing and

a .NET-based Alchemi Framework”, GRIDS Laboratory,

The University of Melbourne, Australia.

[6] Francois Grey, Matti Heikkurinen, Rosy Mondardini,

Robindra Prabhu, “Brief History of Grid”,

http://Gridcafe.web.cern.ch/Gridcafe/Gridhistory/history.

html

[7] Rajkumar Buyya and S Venugopal, “A Gentle

Introduction to Grid Computing and Technologies”,

http://www.buyya.com/papers/GridIntroCSI2005.pdf

[8] Gregor von laszewaski, Ian Foster, Argonne National

Laboratory, Designing Grid Based Problem solving

Environments.

[9] Junwei Cao1, Daniel P. Spooner, Stephen A. Jarvis, and

Graham R. Nudd, Grid Load Balancing Using Intelligent

Agents.

[10] Jennifer M. Schopf, Mathematics and ComputerScience

Division, Argonn National Lab, Department of Computer

Science, Northwestern University, Grids: The Top Ten

Questions.

[11] Karl Czajkowski, Ian Foster and Carl Kesselman,

Resource Co-Allocation in Computational Grids.

[12] Ann Chervenak, Ian Foster, Carl Kesselman, Charles

Salisbury and Steven Tuecke, The Data Grid: Towards

an Architecture for the Distributed Management and

Analysis of Large Scientific Data sets.

[13] Klaus Krauter, Rajkumar Buyya, and Muthucumaru

Maheswaran, a Taxonomy and Survey of Grid Resource

Management Systems.

[14] Arie Shoshani, Alex Sim and Junmin Gu, Lawrence

Berkeley National laboratory, Storage Resource

Managers: Middleware Components for Grid Storage.

[15] Hai Zhuge, Xiaoping Sun, Jie Liu, Erlin Yao, and Xue

Chen, A Scalable P2P Platform for the Knowledge Grid.

