Improving Performance in Load Balancing Problem on the Grid Computing System

Prabhat Kr.Srivastava MCA Department IIMT College of Engineering Greater Noida, India Sonu Gupta MCA Department IIMT College of Engineering Greater Noida, India Dheerendra Singh Yadav MCA Department Dr. KNMIET Modinagar, India

ABSTRACT

Load Balancing is a technique to improve resources, utilizing parallelism, exploiting throughput managing and to reduce response time through proper distribution of the application. Load balancing strategies is always used for the emergence of Distributed systems. Generally there are three type of phases related to Load balancing i.e. Information Collection, Decision Making, Data Migration.

Grid computing is a replica of distributed computing that uses geographically and disperses resources. To increase performance and efficiency, the Grid system needs competent load balancing algorithms for the distribution of tasks. Load balancing algorithms is of two types, static and dynamic. Our projected algorithm is based on dynamic strategies.

Keywords

Information Gathering Policy, Firing Triggering Policy, Hitting Selection Policy

1. INTRODUCTION

Grid computing is a type of parallel and distributed system that enables the distribution, selection and aggregation of geologically resources dynamically at run time depending on their availability, capability, performance, cost, user quality-of -self-service requirement [1].Grid computing, individual users can retrieve computers and data, transparently, without taking into account the location, operating system, account administration, and other details. In Grid computing, the details are abstracted, and the resources are virtualized. Grid Computing should enable the job in question to be run on an idle machine elsewhere on the network [2]. Grids functionally bring together globally distributed computers and information systems for creating a universal source of computing power and information [3]. A key characteristic of Grids is that resources (e.g., CPU cycles and network capacities) are shared among various applications, and therefore, the amount

of resources available to any given application highly fluctuates over time. Load balancing is a technique to enhance resources, utilizing parallelism, exploiting throughput improvisation, and to reduce response time through an appropriate distribution of the application [4].

Load balancing algorithm are two type static and dynamic, Static load balancing algorithms allocate the tasks of a parallel program to workstations based on either the load at the time nodes are allocated to some task, or based on an average load of our workstation cluster. The decisions related to load balance are made at compile time[5].

A few static load balancing techniques are Round robin algorithm, Randomized algorithm, simulated annealing or genetic algorithms, and Dynamic load balancing algorithms make changes to the distribution of work among workstations at run-time; they use current or recent load information when making distribution decisions [6]. Multicomputers with dynamic load balancing allocate/reallocate resources at runtime based on no a priori task information, which may determine when and whose tasks can be migrated [7].

As a result, dynamic load balancing algorithms can provide a major improvement in performance over static algorithms. However, this comes at the additional cost of collecting and maintaining load information, so it is important to keep these overheads within reasonable limits [8].

There are three major parameters which usually define the strategy a specific load balancing algorithm will employ [9]. These three parameters answer three important questions:

Who makes the load balancing decision

> What information is used to make the load balancing decision, and

Where the load balancing decision is made.

2. RELATED WORK

Various Load Balancing Algorithms are available now days but they contain several drawbacks. Such type of problems can be eradicated by our proposed dynamic load balancing algorithm [10].

Comparison of Existing and newly Proposed Algorithm are:

	Information Gathering Policy	Firing Triggering Policy	Hitting Selection Policy
Existing Load Balancing	Load Balancing information is composed using periodic approach	Load Balancing is triggered based on Queue Length	Task is selected for migration using Job Length as criteria.
Proposed Load Balancing	Load Balancing information is collected using Activity based approach	Load Balancer is triggered based on Queue Length and current CPU Load	Task is selected for migration based upon CPU consumption of tasks

In Condor (Existing) based algorithm, Information Policy may be fired by periodic approach while in Proposed algorithm it may be Activity based.

Triggering Policy in Existing Algorithm is based on Queue Length while in Proposed Algorithm it is based on Queue Length and current CPU Length. Selection Policy in Existing Algorithm is done by Selected Task may be migrated using Job Length while in Proposed Algorithm Selection Policy may be fired by Selected task which is migrated based upon CPU Utilization.

Major purpose of our proposed algorithm is Time Complexity i.e., in Proposed Algorithm time complexity is 3 while in Existing Algorithm time complexity is more than newly proposed algorithm. Execution time in .Net Framework using our proposed algorithm is too much fast compared to existing algorithms[11].

3. OUR PROPOSED ALGORITHM

In this paper we propose a dynamic load balancing algorithm for improving performance of grid computing. In this there are four basic steps: Monitoring workstation performance (load monitoring), exchanging this information between workstations (synchronization), Calculating new distributions and making the work movement decision (rebalancing criteria) Actual data movement (job migration). In proposed load balancing algorithm the activities can be categorized as following:

Arrival of any new job and queuing of that job to any particular node, Completion of execution of any job, Arrival of any new resource, Withdrawal of any existing resource.

Segment of code related to algorithm:-

Function: LoadBalancing_start Return Type: Boolean Start: If (CPU Idle of Node is Min and Free Memory of Node is Min and Queue Length of Node is Max) HeavilyLoaded_Node End if If (CPU Idle of Node is Max and Free Memory of Node is Max and Queue Length of Node is Min) Lightlyloded_Node End if Migrate Heavy Loded_Node_Job to Lightly Loded_Node End

Functions used in the above algorithm are:-

Activity_happens (): this function return Boolean value. If any of above defined activity occurs it returns true otherwise it returns false.

LoadBalancing_start (): this function also return Boolean value. If on the basis of given parameters (CPU utilization and queue length) load balancing will be required it will return true else it will return false. This function also updates two lists: HeavilyLoaded_list and LightlyLoaded_list.

4. IMPLEMENTATION AND RESULTS

A Load Balancing component has been developed which executes in simulated grid environment (i.e., Gridsim toolkit). This application has been developed using ASP.NET 3.5 and SQLServer 2005 database server. Following is the snapshot of the index page.

Screen Shot 4.1: Home Page

It contains link to different pages: show jobs, show resources, show allocation and show status. A click on one of the links will link to the different pages.

http://locahost:1060/Load%200	Balancing%20Algorithm/ShowCobs.aspx LOAD BALANCING			v 🛃 🛛
	ALGORITHM Developed By Mr Prakhat Kumar Sriva	stava.	Home Show Job Show Resource Show Allocation Show Status	
-	List Of Job Gener	ated By Grid	Sim The Grid	
	Job Id	Length	"Grid is type of parallel and distributed system	
	35	1223	that enables the sharing, selection and	
	36	1256	aggregation of geographically distributed	
	37	1289	resources dynamically at run time depending	
	38	1367	on their availability, capability, performance,	
	39	1432	cost, user quality-of -self-service	
	44	1563	requirement"	
	45	1694		
	46	1825		
	47	1956	Characteristics Of Grid	
	48	2087		
	49	2218	Heteropeneity	
	50	2349		
	51	2480	Scalability	
	52	2611		
	53	2742	Dynamicity or Adaptabilitye	
	54	2873	Develop OD Language	
	55	3004	Parallel CPU execusion	

Screen Shot 4.2: Show Job Page

Screenshot 4.2 shows two columns: first column is JobID and second is job length. JobID is unique for each job submitted to Grid. Length is the expected job time length given at the time of submission.

🖹 🗟 🏠 🔎	Search 😽 Favo	ntes 🚱 🔗	- & P -	. M 🖞 🔒 🛛	8		
	n .	~ ~	98 C -				. 🕅 ca. 114
	AD BALANC	ING					
AL	GORITHM						
Dev	eloped By Mr Pri	abhat Kumar Si	ivastava.	Home Sh	ow Job Show	w Resource Show Allocation Show Status	
	List of D		Second Du	Call Car			
	LISUULK	esources (senerated by	Grid Sim		The Grid	
IR Address CO	II Coosd/Vbs	COLLINE(2)	Tatal Mamanu I	raa Mamani Oua	ue Length		
172 21 E 22	2200 Speed Vill	DD TELELO	1022822	1200	ue Lengur	"Grid is type of parallel and distributed system	
172.31.5.36	2100	89	1033632	2100	1	that enables the sharing, selection and	
172.31.5.51	2200	70	1033832	700	1	aggregation of geographically distributed	
172.31.5.127	2200	75	1033832	2400	1	resources dynamically at run time depending	
172.31.5.117	2100	80	1033832	3000	1	on their availability, capability, performance,	
172.31.5.57	2200	65	1033832	34367	1	cost, user quality-of -self-service	
172.31.5.147	2300	90	1033832	5841323	1	requirement"	
172.31.5.27	2200	80	1033832	5933567	2		
172.31.5.97	2200	60	1033832	5727397	1		
172.31.5.120	2300	85	1033832	5356785	1	Characteristics Of Grid	
						Heterogeneity	
						Scalability	
						Demoministron Arlantabilities	
						Cymanical or redplannige	
						Parallel CPU execution	

Screen Shot 4.3: Show Resources Page

Screenshot 4.3 is the image of show resources page. This page shows six fields: IPAddress (resource name), CPUSpeed, CPUIdle, TotalMemory, FreeMemory and Queuelength. Three fields CPUIdle, FreeMemory and Queuelength are important because these fields are used to decide that particular resource is heavily loaded or lightly loaded resources and is shown in screen Shot 4.4. If any resource is heavily loaded then the actual load balancing starts.

<u>ote * fields are mendatory</u>		
	CPU Speed*	 KHZ
	Idle CPU *	 %
	Amount Of Memory*	

Screen Shot 4.4: Input Field format

ress 🗿 http://kg	cahost:10601.oad%208	Ialancing%20Algorithm	(ResourceAlic	cation_ascu			V 🗗 😡 U
	*	LOAD BALA ALGORITHI Developed By M	I <mark>NCING</mark> M r Prabhat K	umar Srivast	313.	Home Show Job Show Resource Show Allocation Show Status	
	-	Allocation Of	Job Ge	nerated	By Grid Sin	To Resource The Grid	
			Job Id	Job Leng	th Resource	"Orid is type of parallel and distributed system	
			35	1223	172.31.5.57	that enables the sharing, selection and	
			44	1563	172.31.5.22	aggregation of geographically distributed	
			45	1694	172.31.5.147	resources dynamically at run time depending	
			46	1825	172.31.5.147	on their availability, capability, performance,	
			47	1956	172.31.5.36	cost, user quality-of -self-service	
			48	2087	172.31.5.51	requirement"	
			49	2218	172.31.5.51		
			50	2349	172.31.5.127		
			51	2480	172.31.5.51	Characteristics Of Grid	
			52	2611	172.31.5.22		
			53	2742	172.31.5.22	Heterageneity	
			54	2873	172.31.5.57		
			55	3004	1/2.31.5.147	Scalability	
			56	3135	172.31.5.27		
			5/	3266	1/2.31.5.147	Dynamicity or Adaptabilitye	
			58	3397	172.31.5.97	Parallel CPU execution	
			29	3526	1/2.31.5.147	I MINING OF DISCOURSE	
			60	3659	1/2-31.5.27		

Screen Shot 4.5: Show Allocation Page

Screenshot 4.5 shows three fields JobId, JobLength, Resource. This is generated after allocation of job to resource. Allocation is based on free resource according to requirement of job that has been submitted to resource. This allocation maximizes the resource utilization. In this screenshot corresponding to each JobID, there is a resource name.

tp://locahost.1060/LoaP62	Balancing%204gorithm	(Status-aspic				- DG
	Statue /	Of Resources	Generated By G	rid Sim		
	beacos	List of Make Le	The Grid			
		List of highy co	aded Resources		"Orid is type of parallel and distributed system	
	Resource	CPU Idle	Free Memory	Queue Length	that enables the sharing, selection and	
	172.31.5.22	60	1800	3	apprepation of geographically distributed	
					resources dynamically at run time depending	
					on their availability, capability, performance,	
		List Of Lightly L	oaded Resources		cost, user quality-of -self-service	
	Resource	CPU Idle	Free Memory	Queue Length	requirement"	
	172.31.5.36	89	2100	2		
	172.31.5.51	70	2000	2		
	172.31.5.127	75	2400	2	Characteristics Of Grid	
1.1	172.31.5.117	80	3000	2		
	172.31.5.57	65	34367	2	Heterogeneity	
10	172.31.5.147	80	5553823	1		
	172.31.5.27	110	5634567	1	Scalability	
	172.31.5.97	90	5427897	1	Denamicily or Adaptabilities	
	1/2.31.5.120	85	5356/85	1		
Darform	Load Balanci	on Click Hore			Parallel CPU execution	
Periori		ing circle that is			Virtual consolitations	
					within organizations	
Compa	re between ex	isting and prop	osed algorithms		Resource balancing	
Compar	e with help of	f graph				
					Reliability and Management	

Screen Shot 4.6: Show Status Page

Screenshot 4.6 shows information about gathered about Load Balancing. This page contains two Grids. First Grid contain name of those resource which is heavily loaded and second Grid contain those resources which are lightly loaded. These two Grids are used to decide which resource will act sender and which resource will act as receiver. Job will be migrated from sender (heavily loaded) resource to receiver (lightly loaded) resource if sufficient lightly loaded resources are available then after load balancing no heavily loaded resource will be available. Job from all heavily loaded resource will be migrated to lightly loaded resource. This page also gives information about which heavily loaded resource will migrating the Job to which lightly loaded resource. In above Screenshot resource 172.31.5.22 (name of resource) is heavily loaded resource which has three Jobs. This Page has a link button (i.e. perform load balancing) that performs the action to migrating the job from heavily loaded resource to lightly loaded resource, which is the main concept of our proposed algorithm and is demonstrated in our developed application.

a Load Balancing Alogr	ithm - Microsoft Internet Explor	er					
File Edit Wew Favority	es Tools Help						2
Gask + 🕤 - 🗖	ì 🗟 🚮 🔎 Search 🐈 Fa	vortes 🚱 🍰 🎍	🛛 • 🗖 🖗	0 🛍 🟮 🚳			
Address 🗿 http://localhost:	1060/Load%20Balancing%20Algorithm/L	adBalancing.aspx					🖌 🄁 Go Linis 🏁
	LOAD BALAN ALGORITHM Developed By Mr I	ICING Prabhat Kumar Srivastava.	ł	lome Show	icb Show Res	ource Show Allocation Show Status	^
	Status O	Resources Gene	erated By Gr	rid Sim		The Grid	-
		ist Of Lightly Loaded	d Resources			"Grid is type of parallel and distributed system that enables the sharing, selection and	
	Resource	CPU Idle F	Free Memory	Queue Lengt		aggregation of geographically distributed	
	172.31.5.22	90	2300	2		resources dynamically at run time depending	
	172.31.5.36	89	2100	2		on their availability, capability, performance,	
	172.31.5.51	70	2000	2		cost, user quality-of -self-service	
	172.31.5.127	75	2400	2		requirement"	
	172.31.5.117	80	3000	2			
	172.31.5.57	65	34367	2			
	172.31.5.147	80	5553823	1		Characteristics Of Grid	
	172.31.5.27	80	5634067	2			
	172.31.5.97	90	5427897	1		Heterogeneity	
	172.31.5.120	85	5356785	1			
	Yo	· job has been migrate	d successfully !			Scalability	
						Cynamicity or Adaptabilitye	
	Home					Parallel CPU execution	
						Virtual organizations	▼
C Done		1.0		_		1	Uccal intranet
🐴 start 🛛 🧕 😂	🕘 🍈 🐴 Load Balancing Algori	Load Balancing Alogri.	🛛 👌 Load Balar	ncing Alogri 🤸	Marasoft SQL Server	📓 Document I - Microsof 🔍 🖉	🔆 🖬 🕽 🖄 🖉 3.23 PM

Screen Shot 4.7: Load Balancing Page

Screenshot 4.7: Load Balancing Page appears after Load Balancing has been performed and job is migrated to resource 172.31.5.27. This is one particular case when heavily loaded resource has been finalize and job which should be migrated has been finalize and no heavily loaded resource is available If no lightly resource is available then no migration will be done.

5. CONCLUSION

Through this proposed algorithm, we have described multiple aspects of load balancing algorithm and introduced numerous concepts which illustrate its broad capabilities. Proposed algorithm is definitely a promising tendency to solve high demanding applications and all kinds of problems. Objective of the grid environment is to achieve high performance computing by optimal usage of geographically distributed and heterogeneous resources.

But grid application performance remains a challenge in dynamic grid environment. Resources can be submitted to Grid and can be withdrawn from Grid at any moment. This characteristic of Grid makes Load Balancing one of the critical features of Grid infrastructure. There are a number of factors, which can affect the grid application performance like load balancing, heterogeneity of resources and resource sharing in the Grid environment. In this we have focused on Load Balancing and tried to present the impacts of Load Balancing on grid application performance and finally proposed an efficient Load Balancing algorithm for Grid environment. Every Load Balancing algorithm implements five policies. The efficient implementation of these policies decides overall performance of Load Balancing algorithm. In this work we analyzed existing Load Balancing algorithm and proposed an enhanced algorithm which more efficiently implements three out of five policies implemented in existing Load Balancing algorithm. These three policies are: Information Policy, Triggering Policy and Selection Policy. Proposed algorithm is executed in simulated Grid environment. Load Balancing is one of most important features of Grid Middleware for efficient execution of compute intensive applications. The efficiency of Load Balancing Module overall decides the efficiency of Grid Middleware.

6. REFERENCES

- [1] Krishna rams Kenthapadi, Stanford University, kngk@cs.stanford.edu and Grummet Singh Mankuy, Google Inc., manku@google.com, Decentralized Algorithms using both Local and Random Probes for P2P Load Balancing.
- [2] B. Yagoubi , Department of Computer Science, Faculty of Sciences, University of Oran and Y. Slimani , Department of Computer Science, Faculty of Sciences of Tunis, Task Load Balancing Strategy for Grid Computing.
- [3] Rajkumar Buyya , Grid Computing and Distributed Systems (GRIDS) Lab., Department of Computer Science and Software Engineering, University of Melbourne, Australia and Manzur Murshed, Gippsland School of comp and IT, Monash University, Gippsland Campus , GridSim: a toolkit for the modeling and

simulation of distributed resource mgmt and scheduling for Grid computing.

- [4] Dazhang Gu, Lin Yang, Lonnie R. Welch ,Center for Intelligent, Distributed and Dependable Systems ,School of Electrical Engineering & Computer Science ,Ohio University, A Predictive, Decentralized Load Balancing Approach.
- [5] Akshay Luther, Rajkumar Buyya, Rajiv Ranjan, and Srikumar Venugopal, "Peer-to-Peer Grid Computing and a .NET-based Alchemi Framework", GRIDS Laboratory, The University of Melbourne, Australia.
- [6] Francois Grey, Matti Heikkurinen, Rosy Mondardini, Robindra Prabhu, "Brief History of Grid", http://Gridcafe.web.cern.ch/Gridcafe/Gridhistory/history. html
- [7] Rajkumar Buyya and S Venugopal, "A Gentle Introduction to Grid Computing and Technologies", http://www.buyya.com/papers/GridIntroCSI2005.pdf
- [8] Gregor von laszewaski, Ian Foster, Argonne National Laboratory, Designing Grid Based Problem solving Environments.
- [9] Junwei Cao1, Daniel P. Spooner, Stephen A. Jarvis, and Graham R. Nudd, Grid Load Balancing Using Intelligent Agents.
- [10] Jennifer M. Schopf, Mathematics and ComputerScience Division, Argonn National Lab, Department of Computer Science, Northwestern University, Grids: The Top Ten Questions.
- [11] Karl Czajkowski, Ian Foster and Carl Kesselman, Resource Co-Allocation in Computational Grids.
- [12] Ann Chervenak, Ian Foster, Carl Kesselman, Charles Salisbury and Steven Tuecke, The Data Grid: Towards an Architecture for the Distributed Management and Analysis of Large Scientific Data sets.
- [13] Klaus Krauter, Rajkumar Buyya, and Muthucumaru Maheswaran, a Taxonomy and Survey of Grid Resource Management Systems.
- [14] Arie Shoshani, Alex Sim and Junmin Gu, Lawrence Berkeley National laboratory, Storage Resource Managers: Middleware Components for Grid Storage.
- [15] Hai Zhuge, Xiaoping Sun, Jie Liu, Erlin Yao, and Xue Chen, A Scalable P2P Platform for the Knowledge Grid.