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ABSTRACT 
Manifold learning techniques are used to preserve the original 
geometry of dataset after reduction by preserving the distance 
among data points. MDS (Multidimensional Scaling), ISOMAP 
(Isometric Feature Mapping), LLE (Locally Linear Embedding) 
are some of the geometrical structure preserving dimension 

reduction methods. In this paper, we have compared MDS and 
ISOMAP and considered similarity as an approach to find the 
reduced representation of original data using ISOMAP. 
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1. INTRODUCTION 
To overcome the problems of mining and data analysis on huge 
amount of data different data reduction techniques are used. These 
techniques obtain a reduced representation of the data that 
maintains the integrity of the original data.  Dimensionality 

reduction is one such data reduction and feature selection technique 
which reduce the original data keeping as much original 
information as possible and is used both for data reduction and 
visualization process. Main goal of such techniques is to discover 
the compact representation of data with reduced computational time 
and to solve the problem of curse of dimensionality of high-
dimensional spaces [9]. 

Visualization refers to the graphical representation of the 

information present in the data. But visualizing high dimensional 
data after conversion to lower dimension is one of the important 
problems in data mining. For highly twisted and folded manifold, 
preserving the manifold structure creates problem. Due to explicit 
control of information during reduction process information loss 
also occurs.  

 The main problems are: 

 Unknown intrinsic dimensionality, which means no 

effective way to determine the number of independent variables 
that satisfactorily represent the phenomena. 

 Nonlinear relationships among data make the process 

complicated. 

 Unknown relevance of information. Lossless dimension 

reduction is the ideal one, but often it is not possible to reduce 
the dimension without loss of information. 

 A large number of methods are developed to handle such 

complex problems.  

1.1. Manifold Learning Techniques  
 Manifold learning techniques are used to convert the higher 
dimensional data set to lower dimension, preserving the local 
geometry on the manifold as much as possible.   MDS(Multi-
Dimensional Scaling), PCA(Principal Component Analysis)[9], 

ISOMAP(Isometric Feature Mapping), LLE, Hessian LLE, 
Laplacian Eigenmap, Diffusion maps are some of the manifold 
learning techniques. [2, 8]. 

PCA (Principal Component Analysis), MDS (Multi-Dimensional 
Scaling) basically works well when the data is linear in nature. 
Other techniques are unsupervised nonlinear techniques which try 
to preserve the manifold and are known as non-linear manifold 
learning techniques [2]. 

The basic idea behind nonlinear manifold learning algorithms is that 
the original high dimensional data actually lie on a low dimensional 
manifold which is the difference of local geometry between the 
samples. This is the cause of the development of nonlinear 
dimension reduction methods and representation of high 
dimensional observations through nonlinear mapping [1]. Some of 
the non-linear techniques of dimensionality reduction concentrate 
on preserving the geodetic distances. 

1.2. Geodetic Distances Preserving Methods 
Most commonly used distance measure for continuous data is the 
Euclidean distance. This distance depends only on the value of the 

point coordinates and equals to the straight line segment joining 
the two points. But this distance does not focus on data manifold. 
Distances along the straight line path between two points may not 
be equal to the distances along a geodesic in the manifold. So 
considering Euclidean distance as an input to MDS gives incorrect 
result.  To obtain the correct result geodetic distance is used 
instead of Euclidean distance. The geodetic distance between two 
points of a manifold is the minimum of the length of a path joining 

both points that is contained in the manifold. These paths having 
minimum lengths are called geodesics [3]. 

2. MDS 
MDS is an information visualization technique which considers 
proximity among data values for obtaining the reduced 
representation of original data. Proximity refers to the similarity 
and dissimilarity found among the examined objects. Matrix which 
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contains such information is called proximity matrix. MDS takes 
proximity matrix as input which are in the form of distances and 
finds the corresponding coordinate values embedded in the low 
dimensional space [7]. 

Steps involved in classical MDS algorithm are:- 

 Set up the matrix of squared proximities P(2)=[p2]. 

 Apply the double centering: B=-  J P(2) J using the 

matrix J= I – n-111’ , where n is the number of objects. 

 Extract the m largest positive eigenvalues λ1……λm of B 

and the corresponding m eigenvectors e1….em.  

 A m-dimensional spatial configuration of the n objects is 
derived from the coordinate matrix X= EmΛm

(1/2),where Em is the 
matrix of m eigenvectors and Λm is the diagonal matrix of m 
eigenvalues of B, respectively[7]. 

3. ISOMAP 
Tenenbaum proposed a method called ISOMAP which was a 
combination of topology-preserving network algorithm and 
multidimensional scaling for manifold modeling. Later in 2000 he 

presented a variation of the previous ISOMAP. In the later version 
of ISOMAP, for constructing topology preserving network every 
data point is linked to its K-nearest neighbouring data points or to 
points within Ɛ distance [3]. 

ISOMAP (Isometric Feature Mapping) is a nonlinear 
generalization of Classical MDS, which works well both for real 
world and artificial data. From statistics point of view ISOMAP is 
one of widely used low dimensional embedding methods where 

geodesic distances imposed on a weighted graph are incorporated 
with classical MDS. 

The algorithm given by Tenenbaum involves three steps, which 
takes distance matrix measured, either in the standard Euclidean 
metric or in some domain-specific metric as input and gives those 
coordinate vectors as output that best represents the geometry of 
the data [4]. 

 Construction of neighborhood graph: Two points i and j 

are connected if they are closer than Ɛ or i is one of the k-nearest 
neighbors of j. This process is repeated for all points and a graph 
called neighborhood graph is constructed. Edge lengths are set 

equal to the distance between the two end points. If i and j are two 
points then dx(i, j) represents the distance between i and j and set as 
the length of the edge connecting points i and j. 

 Shortest path computation: dG (i, j) is initialized as dx(i, 

j) if i and j are connected by an edge otherwise dG (i, j) is set to ∞. 
Then shortest path algorithm is applied to find shortest path 
distances between all pairs of points in G. 

 Construction of d-dimensional embedding: Classical 
MDS is used for constructing lower dimensional embedding 
[4,5,6,8]. 

4. COMPARISON OF OUTPUTS OF MDS AND 

ISOMAP 
For experimental analysis we have applied MDS and ISOMAP 
algorithms on Swiss-roll data set. 

 

Figure 1.  1000 data points from Swiss-roll data set 

   

Figure 2.  Output obtained by applying MDS algorithm on 1000 

data points of  Swiss-roll data set 

 

Figure 3.  Output obtained by applying ISOMAP algorithm on 

1000 data points of  Swiss-roll data set 

MDS concentrates on Euclidean distance where as ISOMAP 

focuses on geodetic distance. In case of a curved, twisted manifold 
MDS does not preserve the original geometry and reduced 
representation shows overlapping of data points. But ISOMAP 
takes geodetic distances into consideration and preserve the 
original manifold structure after reduction. This can be verified 
from above outputs. 
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5. RESULTS OBTAINED BY CHANGING 

NEIGHBORHOOD SIZE (K) 
With variation of neighborhood size output of ISOMAP also 
varies. So, selecting a suitable neighborhood size is a very difficult 
task. 

 

Figure 4.  Output obtained by applying ISOMAP algorithm on 

1000 data points of  Swiss-roll data set with neighborhood size 5 

 

Figure 5.  Output obtained by applying ISOMAP algorithm on 

1000 data points of  Swiss-roll data set with neighborhood size 4 

 

Figure 6.  Output obtained by applying ISOMAP algorithm on 

1000 data points of  Swiss-roll data set with neighborhood size 9 

From the above outputs we can conclude that with the change in 
number of nearest neighbors output of ISOMAP also changes. 
With decrease in neighborhood size information loss occurs and 
with increase in neighborhood size overlapping of information 
takes place.  

6. SIMILARITY APPROACH  
Though ISOMAP works well on high-dimensional data sets, still it 
has some drawbacks.   

These are:- 

 Since it uses MDS for low dimensional embedding and 
MDS is slow so ISOMAP is also slow. 

 For different values of K we get different outputs. 
Determining the optimal value for K is very difficult. 

 It assumes the data set as convex and does not handle 

non-convex data sets. 

 ISOMAP removes outliers in preprocessing, so it is extra 

sensitive to noise. 

Though it has so many negative points, it is popularly used for 
high dimensional data sets due to its quality of output as compared 

to other methods [2]. 

In this paper we have considered the similarity among data values 
for constructing the neighborhood graph, instead of using the 
concept of k-nearest neighbor. For constructing the similarity 
matrix we have used the distance matrix as input. The values of the 
similarity matrix will always be with in the range 0 and 1. Here we 
have used the average of the similarity and the difference between 
maximum and average similarity to decide the neighbors of a 

particular data point. 

Our modified method is: 

 Construction of neighborhood graph: From the distance 

matrix we calculate the similarity matrix by using the formula 

Similarity=1/(1+Distance)  (1) 

Thus we obtain the similarity matrix which contains values with in 
0 and 1 having all diagonal elements as 1. Then we find the 
average of all values except the diagonal elements. Suppose this 
value is stored in variable avg. Difference of maximum similarity 
and the calculated average is x.  

x=maximum similarity-avg  (2) 

To reduce the value after the decimal point we divide the 
difference by n.  

x=x/n    (3) 

For obtaining better output we have to vary the value of n. 

 Then set the limit d to find the neighbors as the sum of average 
and x. 

d=avg+x    (4) 

 Shortest path computation: dG (i, j) is initialized as dx(i,j) 

(distance between i and j) if the similarity value is greater than d 
otherwise dG (i, j) is set to ∞. Then shortest path algorithm is 

applied to find shortest path distances between all pairs of points in 
G. 
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 Construction of d-dimensional embedding: Classical 
MDS is used for constructing lower dimensional embedding.  

7. EXPERIMENTAL RESULT OF CONSIDERING 

SIMILARITY 

 

Figure 7.  Output obtained by considering similarity in ISOMAP 

algorithm on 1000 data points of of Swiss-roll data set 

For obtaining the above output we have considered n as 8. This 
value of n gives best output for a variation of data set size from 
600 to 1000. The result obtained by considering similarity 
(figure7) is similar to that obtained by considering distance among 

data points (figure 3). 

8. CONCLUSION 
In this paper, we have compared MDS and ISOMAP algorithms 

and considered similarity among data points as a measure of 
deciding the neighbors of a data point instead of considering 
neighborhood size. This, some way, helps to reduce the size of 
variance, because the size of similarity matrix is limited between 0 
and 1. Time complexity of our algorithm is nearly equal to that of 
the original version of ISOMAP. The proposed process can be 

considered as another approach of creating neighborhood graph for 
the purpose of solving visualization problem using ISOMAP. 

Our future work is to extend the approach of obtaining reduced 
representation and manifold geometry preservation for the manifold 
where a gap is present between two parts. 
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