
International Journal of Computer Applications (0975 – 8887)
Volume 16– No.2, February 2011

26

A Model Based Approach For Regression Testing

Utilizing Distributed Architecture

Vipin Kumar K S
Dept of CSE, RIT, Kottayam

 Sheena Mathew
Reader, SOE, CUSAT

ABSTRACT

The explosive growths in the usage of object oriented
programming in the development of large applications have
put extensive pressure in testing and maintenance of these
systems. A graphical representation for these programs has
the advantage of lending to efficient analysis compared to
code based textual analysis. The Class Dependence Graph
(ClDG) is insufficient to capture the features of real time
safety critical object oriented program. We extend the basic

ClDG to incorporate features like control flow and exception
handling, timing, criticality, method sequences and sate
information. The model that we have developed can easily be
subjected to automated analysis for establishing points within
a program that needs to be tested when the program is
subjected to changes.

General Terms

ClDG, Regression Testing, Distributed Systems, Model-Based
Regression Testing

Keywords

Class, class dependence graph, control dependence, control
flow, data dependence, object, object oriented program, state,
regression testing.

1. INTRODUCTION
The proliferation and development of complex systems has
emphasized the need for an efficient design, development and
maintenance of these systems. As a result there has been as
increase in the usage of object oriented programming for the
development of these systems. The usage of OOPS concept in
development also requires the testing of the system to follow a
distinctive approach compared to conventional testing. We

extend the model that was proposed in [1] to be helpful to
regression testing. A graph model provides a convenient way
of representing and analysis of programs. Analysis of a
graphical model is more efficient compared to a textual code
based analysis. The model that we propose, extends the ClDG
to create a representation for object oriented real time safety
critical systems which is targeted to be helpful in testing and
debugging. Exclusive representation of inheritance,

polymorphism, method sequences, data dependence, control
dependence and control flow relationships between different
elements of a program makes automated analysis of the model
more efficient when compared to code based analysis. The
representation of the state information of the different classes
in the program within the model helps in estimating the
complexity of state based testing of classes. Another
advantage of such model is the capability in assessing the

quality of the program. Some serious work has been done in
developing test strategies and test cases based on UML
diagrams. Most of the work done is based on analysis of
design documents and UML diagrams. In our approach we
use the model, representing the developed program
augmented with additional information from the UML

diagrams for performing test case selection during regression
testing.

ClDG represents the data and control dependencies between

different program elements and is used extensively in
representing object-oriented programs. ClDG helps to
determine the parts of a program that affect a value computed
at a particular point or parts of program affected by a
statement. ClDG is augmented with the control flow
information so as to be helpful in determining the statements
involved in each execution trace.

In order to represent the timing and priority information, we
extend the basic ClDG with control flow and method
sequence information. We represent control flow in the ClDG
by introducing control flow edges to specify the ordering of
statements within a given method. The methods invoking
other methods along with the messages used for the
invocation are represented in the method sequences. The
method invocation edges connect the method entry nodes of

calling method to that of the called method, which form the
individual edges of a method sequence. These method
sequences are used to represent threads to which the timing
and priority information is attributed. The priority information
is stored at the start node of each thread while timing
information is attributed to each method. The events and
operations on object often lead to state transitions. The state
information is stored in each of the class entry nodes to assist
in testing. The control flow edges helps to represent how

exceptions affect the normal flow of control in a program. As
exceptions may transfer control from one method to its calling
method in search of handlers, we have introduced control flow
along with the additional nodes to represent exceptions in the
ClDG. We have named the basic ClDG extended with these
information as Extended ClDG or EClDG for short.

This paper is organized as follows:

 Development of the model by augmenting the basic
ClDG.

 Use of this model for identifying test cases to be re-
run and distribution across a distributed
architecture.

2. MODEL FOR OBJECT ORIENTED

PROGRAMS
The criticality and timing information are associated with

threads in a program. We therefore need to represent a thread

in ClDG. To be able to represent a thread, we need to

represent the sequence of statements making up the thread.

This requires representing control flow information. Control

flow information is easy to determine from the source code.

The control flow information can be represented in the ClDG

by using edges that explicitly specify the ordering of the

statements and method calls. The representation of control

flow helps us to capture vital information required during

International Journal of Computer Applications (0975 – 8887)
Volume 16– No.2, February 2011

27

testing. The number of independent control flow paths in the

graph can be treated as measure of the number of test cases

required for testing the program. The programs may be tested

with the criteria of selecting the test cases in such a way that

all the independent paths are executed atleast once.

With the incorporation of control flow, the control flow paths

help us to represent exceptions. The exception facility allows

programmers to define, throw and catch exceptional objects.

Here we have assumed the syntax of a C++ language but

supporting a strong exception handling facility like Java with

built in exception objects. In Java where there is an Exception

class. Moreover users can raise any object as an exception by

using a throw statement. A try {. . .} catch {. . .} structure

attaches handlers led by the catch construct to a guarded block

of code led by the try construct. Corresponding to each try,

there is one (or more) catch statement(s) that can handle the

exception as and when it occurs in the code enclosed within a

try block. The exact catch block to be executed is selected

based on matching the object raised by the exception and the

one used in the catch statement (both must be of same type).

If the handler for a raised exception cannot be found in the

catch statements available locally, runtime unwinds the call

stack of the try block and propagates the exception upwards.

This propagation continues until a suitable handler is found. If

no suitable handler could be found, the default handler is

called which aborts the program execution. After a handler is

found and executed, the execution of the try block is

terminated. After the catch block completes, execution

continues from the first statement after the try block.

Execution of a throw may change the dependence

relationships of some statements. In sequential programs, the

control dependencies mainly arise due to control condition

statements, function call statements and exceptions that alter

the sequential execution, while data dependencies arise due to

accessing of variables, parameter-transfers and exceptions.

Exceptions do affect data dependence as they may alter the

definition-use chains of some variables. Since a throw

statement and a catch statement may also affect control flow,

it is necessary to represent these different paths possible

during the execution of the program in a ClDG. The throw

and catch nodes in the dependence graph act as head nodes of

the control dependence edges representing alternating paths

when control dependence is analyzed and constructed. As the

evaluation of the conditional expression of a conditional

statement can lead to alternate execution paths, the execution

of the throw statement can lead to execution of different

statements depending on the specific exception event. The set

of statements corresponding to a catch statement is executed

only when the object used in raising of the exception is of the

same type as the one used in the catch statement.

We now illustrate the representation of execution paths

through an example.

Example 1: Consider the sample program shown in Figure 1

The numbers have been assigned sequentially to each

statement in the order they appear in the source code for

identifying them in the ClDG. The prefixes S, E, CE and C

denote statements, method entry, class entry and call nodes

respectively. ClDG is augmented with the control flow

information in Figure 2.

Fig. 1. An Example Program.

Exceptions affect the normal flow of control in a program.

Our approach to represent the same in the ClDG is based on

that reported in [2]. The additional nodes that we introduce in

the ClDG to capture the notion of exception handling are try-

node, catch-node, throw-node, normal exit-node, exception

exit-node, exceptional return-node and normal return-node.

The throw and catch nodes function similar to predicate

nodes. That is, a throw statement affects flow of control,

changing the definition-use chains of some variables, and also

changing the dependence relationship of some statements.

The statements associated with a catch statement may or may

not be executed depending on whether the exception object

matches with that of a catch statement at run-time. So, throw-

nodes and catch-nodes have alternate paths for control to

flow, as an exception may or may not be raised and matching

of exception object with the one used in catch statement.

The Normal Exit and Exceptional Exit nodes are used in the

called function to differentiate between a normal return and a

return occurring due to an exception in that function. A

normal return (represented by Normal Exit node) requires that

the values of the shared variables as well as those of the

formal out parameters (if any) are copied back to the calling

function. When an exception occurs, the exception is handled

in the called function (currently executing function) if the

appropriate handler is available. If appropriate handlers are

not available, the handlers are searched in the calling function

and this is repeated until an appropriate handler is found. If no

suitable handler could be found, then the default handler is

invoked. In either case, no return of out parameters occurs

from the called function to the calling function.

An exception (represented by Exception Exit node) requires

that only the shared variables are copied back to the calling

function, as there is no return of formal out parameters in case

of an exception. Two different nodes, normal return and

exceptional return, are used in the calling function to

determine whether the return from a called function was

normal or due to some exception respectively. The normal

International Journal of Computer Applications (0975 – 8887)
Volume 16– No.2, February 2011

28

return node signifies that the values of the formal out

parameters as well as that of the shared variables are copied

back into the calling function, while the exceptional return

node specifies that only the values of the shared variables are

copied back to the calling function. The start of the guarded

block is shown using a try node.

Fig. 2. ClDG augmented with control flow and exception

handling for the program in Figure 1.

Figure 2 shows the ClDG augmented with the control flow
and exception handling information for the example program
shown in Figure 1.

2.1 Representing Priority and Timing

Details
An MM-Path (Method¡MessageP ath) proposed in [2], [3]

represents the sequence in which methods are executed and

the corresponding messages invoking these methods. MM-

paths capture the order in which different methods are

invoked during execution. The information required to

identify the various MM-paths in an object-oriented program

can be extracted from the UML sequence diagrams. MM-path

originates at a method corresponding to user input or other

internal event and terminate at methods at which method

quiescence (no more method is invoked) occurs.

The specific methods and messages of MM-path for the
example program of Figure 1 is given in Figure 3. The
message or method information along with the line number of
the code is shown. In Figure 3 the scope resolution operator is
used to specify the method that is being invoked for each
message. In our discussion of representation of timing and

priority we consider only the method sequences and not the
message sequences. The method sequences can be identified

from UML sequence diagrams and by code analysis. In order
to identify each method sequence uniquely, a unique identifier
is assigned to each method sequence. This identifier is used in
labeling the individual edges of the method sequence. Each of
the individual edges forming the method sequence is labeled

with method sequence identifier. Thus an edge from method
a() to method b() representing an invocation of method b()
from method a() may be labeled with multiple method
sequence identifier as there may be several method sequences
that has this edge in common. That is several method
sequences may follow the same sub paths.

Fig. 3. The MM-path for the sample program in Fig 1.

We now augment the ClDG with the method sequence
information. A new edge ’method sequence edge’(shown in

Figure 4) is introduced for representing method sequences.
The corresponding nodes of the EClDG and the edges
forming the method sequence are shown in Figure 4. The
’method sequence edge’ represent the individual edges
constituting a method sequence. Each of these edges is labeled
with the method sequence identifier of each of the method
sequences that has this edge in common.

3. TEST CASE SELECTION FOR

REGRESSION TESTING
Regression testing is used when components of the systems

evolve or when new components (and functionality) are added
to the system. It aims at asserting both that changes are correct
and that no regression bugs appear in the system due to the
recent evolution. Generally, previous test sequences are
launched to guarantee that the system has not regressed in
terms of testing quality.

International Journal of Computer Applications (0975 – 8887)
Volume 16– No.2, February 2011

29

Fig. 4 The method sequence for the sample program in Fig 1.
In order to be sure that no bugs are introduced following any
changes to the program, test cases have to be rerun with some
new test cases added to a subset of the earlier set. But problem
lies in identifying exactly which are the test cases that need to

be rerun. Incase some new test cases need to be introduced
what would be the criteria based on which these test cases
need to be formulated. Running the entire set of test cases in
not viable all the time, since the running of all the test cases
may consume a lot of time. Often what is seen in the software
industry is that often changes are introduced during the final
stages of the software release and rerunning the entire test
suite is not viable.

The model helps by lending itself to automated analysis and
there by determining exactly which all test cases need to be
rerun. More over the data dependence and control dependence
edges provide us vital information in determining the new test
cases that need to be added to the set of test cases. For this we
maintain the trace information of each test case when it is run.
The trace of a test case provides information concerning the

set of statements that are executed during the execution of a
test case. Analysis of graphical models of the system
preceding and following the regression helps in determining
the nodes that are affected following the changes. The test
cases can now be selected based on the statements covered by
its trace. All the test cases that have at least one of these
affected statements in their trace are rerun in a traditional
approach to regression testing. The model helps in optimizing

the test cases by considering the changes happening in the
data dependence relation of the nodes following a regression.

In situation where we need to introduce new test cases to
cover newly introduced nodes, the test case generation is
based on the data dependence of these nodes with the other
nodes of the EClDG. The test cases are generated such that all
the data dependence edges are tested.

Consider an arbitrary EClDG having arbitrary nodes N1, N2,

N3…Nm. The nodes represented as Nei represent some of the

exit or termination nodes in the EClDG. It must be noted that

the exit nodes could be exit nodes corresponding to exception

exits. Each of the traces corresponding to each test case is

represented by T1, T2, T3…Tn. The model helps us identify

the test cases to be rerun after a regression. The model created

for the regressed program is analyzed for changes with the

model created for the program prior to the change. The

analysis identifies the nodes in the earlier program that has

undergone changes. Now the trace information is analyzed to

precisely identify the test cases that have execution trace

involving these nodes.

Following are three traces corresponding to three different test

cases. The nodes executed by each of the test cases are also

listed.

T1: N1 N4 N3 N4 . . . Ni . . .Nk . . . Nj . . . Ne1

T2: N1 N4 N7 N10 . . .Nk . . . Ne2

T3: N1 N4 N9 N5 . . . Nj . . .Ni . . . Ne3

Fig. 5. Trace corresponding to each test case.

Suppose the analysis following the regression identifies the

nodes Ni and Nj as being the nodes being affected. This

readily provides us with the information that the test cases that

need to be rerun are T1 and T2. It is also worth noting that

even though a set of nodes may be affected by the regression,

it may be possible to identify a subset or a smaller set, which

is the dominating set. This is because all the execution paths

that pass through some node in the original set may also all

the time execute some node in this subset or smaller set. In

International Journal of Computer Applications (0975 – 8887)
Volume 16– No.2, February 2011

30

Figure 6 if the original set is {Nj, Nk} it is sufficient to

analyze the dominating set {Ni}.

Fig. 6. Execution path.

We now define two relations Rpre (Pre-Dominating) and Rpost

(Post-Dominating) between any two nodes in the graph. The

same is extended to be a relation between two sets of nodes.

For two nodes Ni and Nj, Ni Rpre Nj if all the execution paths

passing through Nj also executes Ni before executing Nj. For

two nodes Ni and Nj, Ni Rpost Nj if all the execution paths

passing through Nj also executes Ni after executing Nj. It is

possible to define a similar relation Rd (Dominating) between

two set of nodes S1 and S2 such that S1 Rd S2 if all the

execution paths executing some node in S2 also executes

some node in S1. So for any two set of nodes R and M, where

set R represents the nodes that have been affected by the

regression and M a the minimal set of nodes such that M Rd R.

Now it is possible to identify the optimal set of test cases by

analyzing just the set M instead of the set R.

Regressions most of the time force a large portion of the test

cases to be rerun. Also the fact that regressions occur at later

stage of an application development cycle makes it necessary

to employ fast means of performing regression testing. It is

here that we try to explore the usability of distributed

computation to regression testing. It is possible to employ

distributed computation at potentially two phases in

regression testing that we have discussed. That is in the

identification of test cases to be rerun and in the execution of

these test cases. Once the minimal set of nodes have been

identified the set may be distributed among different nodes

which use this set to analyze the test cases exhaustively and

exclusively to find the set of test cases to be rerun.

Fig. 7. Identification of test cases

The test cases are then run independently on each nodes

and the result is analyzed.

Fig. 8. Execution of test cases

4. RELATED WORK
The representation of intra-functional dependencies in [2], and
the concepts of MM-path described in [3], [4] has been
incorporated to represent exception handling as well as
message sequence information in our model. The Object
Oriented testing techniques mostly focuses on the dynamic
aspects of the systems viewed at a higher hierarchical level

and uses object state modeling or its equivalent which is very
in sufficient considering the intricacies involved in
determining test cases. Regression testing strategies discussed
in [11] are based on component view of the program. We have
addressed the same issues at statement level using the model.
In [12] the class message diagram is used for test case
selection. Though the model helps in test case selection it
serves very little purpose is determining the new test cases

that need to be added. The representation of data dependence
in our model helps in test case generation in case of newly
added nodes.

International Journal of Computer Applications (0975 – 8887)
Volume 16– No.2, February 2011

31

5. CONCLUSION
The proposed method of determining test cases to be rerun

uses the proposed model as primary artifact for analysis
instead of the source code. The paper demonstrates the
building up of model EClDG based on ClDG which
incorporates vital information required for identification of
test cases. Since regressions force the system to be tested in
quick time this is an area where distributed computations need
to be used effectively. In this paper we have outlined how the
model is used in the identifying the test cases to be rerun and

how the distributed architecture can be used in identification
of test cases and then to test the system.

6. REFERENCES
[1] Vipin Kumar.K.S, Rajib Mall, “A Novel Intermediate

Representation for Real Time Safety Critical Object

Oriented Program”, Proceedings of National Conference
on Computational Science and Engineering
NCCSE2009, pp. 2026, 2009.

[2] Shujuan Jiang, Shengwu Zhou, Yuqin Shi, and
Yuanpeng Jiang,"Improving the Preciseness of
Dependence Analysis using Exception Analysis",
Proceedings of the 15th International Conference on
Computing IEEE,pp. 277282,2006.

[3] Ruilian Zhao, Ling Lin, "An UML State chart Diagram
Based MMPath Generation Approach for Object
Oriented Integration Testing”, International Journal of
Applied Mathematics and Computer Sciences Volume 3
Number 1.

[4] Paul C. Jorgensen, Carl Erickson, "Object Oriented
Integration Testing, Communications of ACM",
Vol.37,No. 9, pp. 3038,1994.

[5] Frank Tsui, Orlando Karam and Stanley Iriele, “A Test
Complexity Metric Based on Dataflow Testing
Technique”, Internal Report July, 2008.

[6] L. Larsen and M. J. Harrold, “Slicing object oriented
software,” in Proc.of the 18th International Conference
On Software Engineering, March1996, pp. 495–505.

[7] M. Xenos, D. Stavrinoudis, K. Zikouli and D.
Christodoulakis, “Object Oriented Metrics A Survey”,
Proceedings of the FESMA 2000, Federation of
European Software Measurement Associations, Madrid,
Spain, 2000

[8] T.J. McCabe, L. A. Dreyer et al., “Testing an object
oriented application”, Journal of the Quality Assurance
Institute, October 1994, pp 2127

[9] Chen, K. and Rajlich, V., “Case study of feature location

using dependence graph”, Proceedings of IEEE
International Workshop on Program Comprehension, Los
Alamitos, CA, 2000, pp. 241249

[10] Suresh Nageswaran, “Test Effort Estimation Using Use
Case Points”, Quality Week 2001, San Francisco,
California, USA, June 2001

[11] Yves Le Traon, Thierry Jron, Jean Marc Jzquel, and
Pierre Morel, “Efficient Object Oriented Integration and
Regression Testing”, IEEE Transactions On Reliability,
Vol. 49, March 2000, Pg 1225

