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ABSTRACT 

The explosive growths in the usage of object oriented 
programming in the development of large applications have 
put extensive pressure in testing and maintenance of these 
systems. A graphical representation for these programs has 
the advantage of lending to efficient analysis compared to 
code based textual analysis. The Class Dependence Graph 
(ClDG) is insufficient to capture the features of real time 
safety critical object oriented program. We extend the basic 

ClDG to incorporate features like control flow and exception 
handling, timing, criticality, method sequences and sate 
information. The model that we have developed can easily be 
subjected to automated analysis for establishing points within 
a program that needs to be tested when the program is 
subjected to changes. 
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1. INTRODUCTION 
The proliferation and development of complex systems has 
emphasized the need for an efficient design, development and 
maintenance of these systems. As a result there has been as 
increase in the usage of object oriented programming for the 
development of these systems. The usage of OOPS concept in 
development also requires the testing of the system to follow a 
distinctive approach compared to conventional testing. We 

extend the model that was proposed in [1] to be helpful to 
regression testing. A graph model provides a convenient way 
of representing and analysis of programs. Analysis of a 
graphical model is more efficient compared to a textual code 
based analysis. The model that we propose, extends the ClDG 
to create a representation for object oriented real time safety 
critical systems which is targeted to be helpful in testing and 
debugging. Exclusive representation of inheritance, 

polymorphism, method sequences, data dependence, control 
dependence and control flow relationships between different 
elements of a program makes automated analysis of the model 
more efficient when compared to code based analysis. The 
representation of the state information of the different classes 
in the program within the model helps in estimating the 
complexity of state based testing of classes. Another 
advantage of such model is the capability in assessing the 

quality of the program. Some serious work has been done in 
developing test strategies and test cases based on UML 
diagrams. Most of the work done is based on analysis of 
design documents and UML diagrams. In our approach we 
use the model, representing the developed program 
augmented with additional information from the UML 

diagrams for performing test case selection during regression 
testing. 
 
ClDG represents the data and control dependencies between 

different program elements and is used extensively in 
representing object-oriented programs. ClDG helps to 
determine the parts of a program that affect a value computed 
at a particular point or parts of program affected by a 
statement. ClDG is augmented with the control flow 
information so as to be helpful in determining the statements 
involved in each execution trace.  
 

In order to represent the timing and priority information, we 
extend the basic ClDG with control flow and method 
sequence information. We represent control flow in the ClDG 
by introducing control flow edges to specify the ordering of 
statements within a given method. The methods invoking 
other methods along with the messages used for the 
invocation are represented in the method sequences. The 
method invocation edges connect the method entry nodes of 

calling method to that of the called method, which form the 
individual edges of a method sequence. These method 
sequences are used to represent threads to which the timing 
and priority information is attributed. The priority information 
is stored at the start node of each thread while timing 
information is attributed to each method. The events and 
operations on object often lead to state transitions. The state 
information is stored in each of the class entry nodes to assist 
in testing. The control flow edges helps to represent how 

exceptions affect the normal flow of control in a program. As 
exceptions may transfer control from one method to its calling 
method in search of handlers, we have introduced control flow 
along with the additional nodes to represent exceptions in the 
ClDG. We have named the basic ClDG extended with these 
information as Extended ClDG or EClDG for short. 
 
This paper is organized as follows: 

 Development of the model by augmenting the basic 
ClDG. 

 Use of this model for identifying test cases to be re-
run and distribution across a distributed 
architecture. 

2. MODEL FOR OBJECT ORIENTED 

PROGRAMS 
The criticality and timing information are associated with 

threads in a program. We therefore need to represent a thread 

in ClDG. To be able to represent a thread, we need to 

represent the sequence of statements making up the thread. 

This requires representing control flow information. Control 

flow information is easy to determine from the source code. 

The control flow information can be represented in the ClDG 

by using edges that explicitly specify the ordering of the 

statements and method calls. The representation of control 

flow helps us to capture vital information required during 
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testing. The number of independent control flow paths in the 

graph can be treated as measure of the number of test cases 

required for testing the program. The programs may be tested 

with the criteria of selecting the test cases in such a way that 

all the independent paths are executed atleast once. 

 

With the incorporation of control flow, the control flow paths 

help us to represent exceptions. The exception facility allows 

programmers to define, throw and catch exceptional objects. 

Here we have assumed the syntax of a C++ language but 

supporting a strong exception handling facility like Java with 

built in exception objects. In Java where there is an Exception 

class. Moreover users can raise any object as an exception by 

using a throw statement. A try {. . .} catch {. . .} structure 

attaches handlers led by the catch construct to a guarded block 

of code led by the try construct. Corresponding to each try, 

there is one (or more) catch statement(s) that can handle the 

exception as and when it occurs in the code enclosed within a 

try block. The exact catch block to be executed is selected 

based on matching the object raised by the exception and the 

one used in the catch statement (both must be of same type). 

If the handler for a raised exception cannot be found in the 

catch statements available locally, runtime unwinds the call 

stack of the try block and propagates the exception upwards. 

This propagation continues until a suitable handler is found. If 

no suitable handler could be found, the default handler is 

called which aborts the program execution. After a handler is 

found and executed, the execution of the try block is 

terminated. After the catch block completes, execution 

continues from the first statement after the try block.  

 

Execution of a throw may change the dependence 

relationships of some statements. In sequential programs, the 

control dependencies mainly arise due to control condition 

statements, function call statements and exceptions that alter 

the sequential execution, while data dependencies arise due to 

accessing of variables, parameter-transfers and exceptions. 

Exceptions do affect data dependence as they may alter the 

definition-use chains of some variables. Since a throw 

statement and a catch statement may also affect control flow, 

it is necessary to represent these different paths possible 

during the execution of the program in a ClDG. The throw 

and catch nodes in the dependence graph act as head nodes of 

the control dependence edges representing alternating paths 

when control dependence is analyzed and constructed. As the 

evaluation of the conditional expression of a conditional 

statement can lead to alternate execution paths, the execution 

of the throw statement can lead to execution of different 

statements depending on the specific exception event. The set 

of statements corresponding to a catch statement is executed 

only when the object used in raising of the exception is of the 

same type as the one used in the catch statement. 

 

We now illustrate the representation of execution paths 

through an example. 

 

Example 1:   Consider the sample program shown in Figure 1 

 

The numbers have been assigned sequentially to each 

statement in the order they appear in the source code for  

identifying them in the ClDG. The prefixes S, E, CE and C 

denote statements, method entry, class entry and call nodes 

respectively. ClDG is augmented with the control flow   

information in Figure 2. 

 
Fig. 1. An Example Program. 

Exceptions affect the normal flow of control in a program. 

Our approach to represent the same in the ClDG is based on 

that reported in [2]. The additional nodes that we introduce in 

the ClDG to capture the notion of exception handling are try-

node, catch-node, throw-node, normal exit-node, exception 

exit-node, exceptional return-node and normal return-node. 

The throw and catch nodes function similar to predicate 

nodes. That is, a throw statement affects flow of control, 

changing the definition-use chains of some variables, and also 

changing the dependence relationship of some statements. 

 

The statements associated with a catch statement may or may 

not be executed depending on whether the exception object 

matches with that of a catch statement at run-time. So, throw-

nodes and catch-nodes have alternate paths for control to 

flow, as an exception may or may not be raised and matching 

of exception object with the one used in catch statement. 

 

The Normal Exit and Exceptional Exit nodes are used in the 

called function to differentiate between a normal return and a 

return occurring due to an exception in that function. A 

normal return (represented by Normal Exit node) requires that 

the values of the shared variables as well as those of the 

formal out parameters (if any) are copied back to the calling 

function. When an exception occurs, the exception is handled 

in the called function (currently executing function) if the 

appropriate handler is available. If appropriate handlers are 

not available, the handlers are searched in the calling function 

and this is repeated until an appropriate handler is found. If no 

suitable handler could be found, then the default handler is 

invoked. In either case, no return of out parameters occurs 

from the called function to the calling function. 

 

An exception (represented by Exception Exit node) requires 

that only the shared variables are copied back to the calling 

function, as there is no return of formal out parameters in case 

of an exception. Two different nodes, normal return and 

exceptional return, are used in the calling function to 

determine whether the return from a called function was 

normal or due to some exception respectively. The normal 
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return node signifies that the values of the formal out 

parameters as well as that of the shared variables are copied 

back into the calling function, while the exceptional return 

node specifies that only the values of the shared variables are 

copied back to the calling function. The start of the guarded 

block is shown using a try node. 

 
Fig. 2. ClDG augmented with control flow and exception 

handling for the program in Figure 1. 

 

Figure 2 shows the ClDG augmented with the control flow 
and exception handling information for the example program 
shown in Figure 1. 

2.1 Representing Priority and Timing 

Details 
An MM-Path (Method¡MessageP ath) proposed in [2], [3] 

represents the sequence in which methods are executed and 

the corresponding messages invoking these methods. MM-

paths capture the order in which different methods are 

invoked during execution. The information required to 

identify the various MM-paths in an object-oriented program 

can be extracted from the UML sequence diagrams. MM-path 

originates at a method corresponding to user input or other 

internal event and terminate at methods at which method 

quiescence (no more method is invoked) occurs. 

The specific methods and messages of MM-path for the 
example program of Figure 1 is given in Figure 3. The 
message or method information along with the line number of 
the code is shown. In Figure 3 the scope resolution operator is 
used to specify the method that is being invoked for each 
message. In our discussion of representation of timing and 

priority we consider only the method sequences and not the 
message sequences. The method sequences can be identified 

from UML sequence diagrams and by code analysis. In order 
to identify each method sequence uniquely, a unique identifier 
is assigned to each method sequence. This identifier is used in 
labeling the individual edges of the method sequence. Each of 
the individual edges forming the method sequence is labeled 

with method sequence identifier. Thus an edge from method 
a() to method b() representing an invocation of method b() 
from method a() may be labeled with multiple method 
sequence identifier as there may be several method sequences 
that has this edge in common. That is several method 
sequences may follow the same sub paths. 
 

 

Fig. 3. The MM-path for the sample program in Fig 1. 
 
We now augment the ClDG with the method sequence 
information. A new edge ’method sequence edge’(shown in 

Figure 4) is introduced for representing method sequences. 
The corresponding nodes of the EClDG and the edges 
forming the method sequence are shown in Figure 4. The 
’method sequence edge’ represent the individual edges 
constituting a method sequence. Each of these edges is labeled 
with the method sequence identifier of each of the method 
sequences that has this edge in common. 

3. TEST CASE SELECTION FOR 

REGRESSION TESTING 
Regression testing is used when components of the systems 

evolve or when new components (and functionality) are added 
to the system. It aims at asserting both that changes are correct 
and that no regression bugs appear in the system due to the 
recent evolution. Generally, previous test sequences are 
launched to guarantee that the system has not regressed in 
terms of testing quality. 
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Fig. 4 The method sequence for the sample program in Fig 1.  
In order to be sure that no bugs are introduced following any 
changes to the program, test cases have to be rerun with some 
new test cases added to a subset of the earlier set. But problem 
lies in identifying exactly which are the test cases that need to 

be rerun. Incase some new test cases need to be introduced 
what would be the criteria based on which these test cases 
need to be formulated. Running the entire set of test cases in 
not viable all the time, since the running of all the test cases 
may consume a lot of time. Often what is seen in the software 
industry is that often changes are introduced during the final 
stages of the software release and rerunning the entire test 
suite is not viable. 

 
The model helps by lending itself to automated analysis and 
there by determining exactly which all test cases need to be 
rerun. More over the data dependence and control dependence 
edges provide us vital information in determining the new test 
cases that need to be added to the set of test cases. For this we 
maintain the trace information of each test case when it is run. 
The trace of a test case provides information concerning the 

set of statements that are executed during the execution of a 
test case. Analysis of graphical models of the system 
preceding and following the regression helps in determining 
the nodes that are affected following the changes. The test 
cases can now be selected based on the statements covered by 
its trace. All the test cases that have at least one of these 
affected statements in their trace are rerun in a traditional 
approach to regression testing. The model helps in optimizing 

the test cases by considering the changes happening in the 
data dependence relation of the nodes following a regression.  
 
In situation where we need to introduce new test cases to 
cover newly introduced nodes, the test case generation is 
based on the data dependence of these nodes with the other 
nodes of the EClDG. The test cases are generated such that all 
the data dependence edges are tested.  

 
Consider an arbitrary EClDG having arbitrary nodes N1, N2, 

N3…Nm. The nodes represented as Nei represent some of the 

exit or termination nodes in the EClDG. It must be noted that 

the exit nodes could be exit nodes corresponding to exception 

exits. Each of the traces corresponding to each test case is 

represented by T1, T2, T3…Tn. The model helps us identify 

the test cases to be rerun after a regression. The model created 

for the regressed program is analyzed for changes with the 

model created for the program prior to the change. The 

analysis identifies the nodes in the earlier program that has 

undergone changes. Now the trace information is analyzed to 

precisely identify the test cases that have execution trace 

involving these nodes. 

Following are three traces corresponding to three different test 

cases. The nodes executed by each of the test cases are also 

listed. 

T1: N1   N4   N3   N4 . . . Ni . . .Nk . . . Nj . . . Ne1 

T2: N1   N4   N7   N10 . . .Nk . . . Ne2 

T3: N1   N4   N9   N5 . . . Nj . . .Ni . . . Ne3 

 

 

 

Fig. 5. Trace corresponding to each test case. 
 

Suppose the analysis following the regression identifies the 

nodes Ni and Nj as being the nodes being affected. This 

readily provides us with the information that the test cases that 

need to be rerun are T1 and T2. It is also worth noting that 

even though a set of nodes may be affected by the regression, 

it may be possible to identify a subset or a smaller set, which 

is the dominating set. This is because all the execution paths 

that pass through some node in the original set may also all 

the time execute some node in this subset or smaller set. In 
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Figure 6 if the original set is {Nj, Nk} it is sufficient to 

analyze the dominating set {Ni}. 

 

 

Fig. 6. Execution path. 
 

We now define two relations Rpre (Pre-Dominating) and Rpost 

(Post-Dominating) between any two nodes in the graph. The 

same is extended to be a relation between two sets of nodes. 

For two nodes Ni and Nj, Ni Rpre Nj if all the execution paths 

passing through Nj also executes Ni before executing Nj. For 

two nodes Ni and Nj, Ni Rpost Nj if all the execution paths 

passing through Nj also executes Ni after executing Nj. It is 

possible to define a similar relation Rd (Dominating) between 

two set of nodes S1 and S2 such that S1 Rd S2 if all the 

execution paths executing some node in S2 also executes 

some node in S1. So for any two set of nodes R and M, where 

set R represents the nodes that have been affected by the 

regression and M a the minimal set of nodes such that M Rd R. 

Now it is possible to identify the optimal set of test cases by 

analyzing just the set M instead of the set R. 

Regressions most of the time force a large portion of the test 

cases to be rerun. Also the fact that regressions occur at later 

stage of an application development cycle makes it necessary 

to employ fast means of performing regression testing. It is 

here that we try to explore the usability of distributed 

computation to regression testing. It is possible to employ 

distributed computation at potentially two phases in 

regression testing that we have discussed. That is in the 

identification of test cases to be rerun and in the execution of 

these test cases. Once the minimal set of nodes have been 

identified the set may be distributed among different nodes 

which use this set to analyze the test cases exhaustively and 

exclusively to find the set of test cases to be rerun.   

 

 

Fig. 7. Identification of test cases 
 

The test cases are then run independently on each nodes 

and the result is analyzed. 

 

 

Fig. 8. Execution of test cases 
 

4. RELATED WORK 
The representation of intra-functional dependencies in [2], and 
the concepts of MM-path described in [3], [4] has been 
incorporated to represent exception handling as well as 
message sequence information in our model. The Object 
Oriented testing techniques mostly focuses on the dynamic 
aspects of the systems viewed at a higher hierarchical level 

and uses object state modeling or its equivalent which is very 
in sufficient considering the intricacies involved in 
determining test cases. Regression testing strategies discussed 
in [11] are based on component view of the program. We have 
addressed the same issues at statement level using the model. 
In [12] the class message diagram is used for test case 
selection. Though the model helps in test case selection it 
serves very little purpose is determining the new test cases 

that need to be added. The representation of data dependence 
in our model helps in test case generation in case of newly 
added nodes.  
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5. CONCLUSION 
The proposed method of determining test cases to be rerun 

uses the proposed model as primary artifact for analysis 
instead of the source code. The paper demonstrates the 
building up of model EClDG based on ClDG which 
incorporates vital information required for identification of 
test cases. Since regressions force the system to be tested in 
quick time this is an area where distributed computations need 
to be used effectively.  In this paper we have outlined how the 
model is used in the identifying the test cases to be rerun and 

how the distributed architecture can be used in identification 
of test cases and then to test the system. 
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